×

zbMATH — the first resource for mathematics

Immersion and embedding of projective varieties. (English) Zbl 0373.14005

MSC:
14E25 Embeddings in algebraic geometry
14C99 Cycles and subschemes
14N05 Projective techniques in algebraic geometry
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Baldassarri, M.,Algebraic varieties. Springer-Verlag, 1956. · Zbl 0075.15902
[2] Fulton, W., Rational equivalence on singular varieties.Publ. Math. I.H.E.S., 45 (1975), 147–167. · Zbl 0332.14002
[3] Fulton, W. & Johnson, K., Canonical classes of singular varieties. To appear. · Zbl 0451.14001
[4] Gitler, S., Immersion and embedding of manifolds.Amer. Math. Soc. Proc. Sym. XXII (1971), 87–96. · Zbl 0251.57011
[5] Grothendieck, A., La theorie des classes de Chern.Bull. Soc. Math. France, 86 (1958), 137–154. · Zbl 0091.33201
[6] Grothendieck, A. & Dieudonne, J., Elements de geometrie algebrique.Publ. Math. I.H.E.S. 8, 32.
[7] Hodge, W. V. D. & Pedoe, D.,Methods of algebraic geometry, vol. II. Cambridge University Press, 1952. · Zbl 0048.14502
[8] Holme, A., Embedding-obstruction for algebraic varieties I. Preprint, University of Bergen, Norway (1974). To appear inAdvances in Math. · Zbl 0309.14013
[9] –, Embedding-obstruction for singular algebraic varieties inP N .Acta Math., 135 (1976), 155–185. · Zbl 0339.14007 · doi:10.1007/BF02392018
[10] Kempf, G. &Laksov, D., The determinantal formula of Schubert calculus.Acta Math., 132 (1974), 153–162. · Zbl 0295.14023 · doi:10.1007/BF02392111
[11] Kleiman, S., Geometry on Grassmannians and applications to splitting bundles and smoothing cycles.Publ. Math. I.H.E.S., 36 (1969), 281–298. · Zbl 0208.48501
[12] Laksov, D., Secant bundles and Todd’s formula for the double points of maps intoP N . To appear. · Zbl 0384.14017
[13] –, Residual intersections and Todd’s formula for the double locus of a morphism.Acta Math., 140 (1978), 74–91. · Zbl 0388.14006 · doi:10.1007/BF02392304
[14] MacPherson, R., Chern classes for singular algebraic varieties.Ann. of Math. (2), 100 (1974), 423–432. · Zbl 0311.14001 · doi:10.2307/1971080
[15] McCrory, C., Geometric homology operations. To appear inAdvances in Math. · Zbl 0454.55014
[16] McCrory, C., Lectures, Brown University, Springer 1976.
[17] Mumford, D.,Lectures on curves on an algebraic surface. Ann. of Math. Studies, no. 59, Princeton Univ. Press, 1966. · Zbl 0187.42701
[18] Mumford, D.,Introduction to algebraic geometry. Lecture notes, Harvard University. 1966. · Zbl 0187.42701
[19] Peters, C. A. M. &Simonis, J., A secant formula.Quart. J. Math. Oxford (2), 27 (1976), 181–189. · Zbl 0334.14028 · doi:10.1093/qmath/27.2.181
[20] Pontrjagin, L. S., Vector fields on manifolds.Mat. Sb., 24 (66), (1949), 129–162; English transl.,Amer. Math. Soc. Transl. (1) 7 (1962), 220–278.
[21] Porteous, I. R., Blowing up chern classes.Proc. Cambridge Phil. Soc., 56 (1960), 118–124. · Zbl 0166.16701 · doi:10.1017/S0305004100034368
[22] Porteous, I. R., Simple singularities of maps,Proc. Liverpool Singularities Sym. I, Springer Lecture Notes in Mathematics 192 (1965). · Zbl 0221.57016
[23] Serre, J.-P.,Algebre locale-multiplicites. Springer Lecture Notes in Mathematics 11 (1965).
[24] Severi, F., Sulle intersezioni delle varieta algebriche e sopra i loro caratteri e singolarita proiettive.Mem. Accad. Sci. Torino S. II, 52 (1902), 61–118.
[25] Thom, R., Les singularites des applications differentiables.Ann. Inst. Fourier, 6 (1956), 43–87. · Zbl 0075.32104
[26] Todd, J. A., Invariant and covariant systems on an algebraic variety.Proc. London Math. Soc., 46 (1940), 199–230. · Zbl 0022.39201 · doi:10.1112/plms/s2-46.1.199
[27] Well, A.,Foundations of algebraic geometry, 2nd edition. Amer. Math. Soc. Coll. Publ., 29, Providence, 1962.
[28] Whitney, H., Local properties of analytic varieties. InDifferential and Combinatorial Topology, ed. S. Cairns, Princeton Univ. Press, 1965. · Zbl 0129.39402
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.