×

On optimality conditions in nondifferentiable programming. (English) Zbl 0373.90071


MSC:

90C30 Nonlinear programming
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] M.S. Bazaraa, J.J. Goode and Z. Nashed, ”On the cones of tangents with applications to mathematical programming”,Journal of Optimization Theory and Applications 13 (4) (1974) 389–426. · Zbl 0259.90037
[2] F.H. Clarke, ”Necessary conditions for nonsmooth problems in optimal control and the calculus of variations”, Ph.D. Thesis, University of Washington (1973).
[3] F.H. Clarke, ”Generalized gradients and applications”,Transactions of the American Mathematical Society 205 (1975) 247–262. · Zbl 0307.26012
[4] F.H. Clarke, ”A new approach to Lagrange multipliers”,Mathematics of Operations Research 1 (1976) 165–174. · Zbl 0404.90100
[5] A.V. Fiacco and G.P. McCormick,Nonlinear programming: sequential unconstrained minimization techniques (Wiley, New York, 1968). · Zbl 0193.18805
[6] I.V. Girsanov,Lectures on mathematical theory of extremum problems, Lecture Notes in Economics and Mathematical Systems (Springer, Berlin, 1972). · Zbl 0234.49016
[7] F.J. Gould and J.W. Tolle, ”A necessary and sufficient qualification for constrained optimization”,SIAM Journal on Applied Mathematics 20 (2) (1971) 164–172. · Zbl 0217.57501
[8] M. Guignard, ”Generalized Kuhn–Tucker conditions for mathematical programming problems in a Banach space”,SIAM Journal on Control 7 (2) (1969) 232–241. · Zbl 0182.53101
[9] J.B. Hiriart-Urruty, ”Conditions nécessaires d’optimalité en programmation non différentiable”,Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences, Séries A, 283 (1976) 843–845. · Zbl 0359.49009
[10] J.B. Hiriart-Urruty, ”Conditions nécessaires d’optimalité en programmation non différentiable”, Séminaire d’Analyse Numérique, Université de Clermont II (1976).
[11] P.J. Laurent,Approximation et optimisation (Hermann, Paris, 1972). · Zbl 0238.90058
[12] O.L. Mangasarian and S. Fromowitz, ”The Fritz–John necessary optimality conditions in the presence of equality and inequality constraints”,Journal of Mathematical Analysis and Applications 17 (1967) 37–47. · Zbl 0149.16701
[13] J.P. Penot, ”Calcul sous-différentiel et optimisation”, Publications mathématiques de l’Université de Pau (1974).
[14] R.T. Rockafellar,Convex analysis, (Princeton University Press, Princeton, 1970). · Zbl 0193.18401
[15] R.T. Rockafellar, ”Lagrange multipliers in optimization”, in: R.W. Cottle and C.E. Lemke, eds.,SIAM-AMS proceedings, Vol IX (1976) pp. 145–168. · Zbl 0341.90046
[16] N.Z. Shor, ”A class of almost-differentiable functions and a minimization method for functions of this class”,Cybernetics 8 (4) (1974) 509–606.
[17] P.P. Varaiya, ”Nonlinear programming in Banach space”,SIAM Journal on Applied Mathematics 15 (2) (1967) 284–293. · Zbl 0171.18004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.