×

Coefficients of inverses of meromorphic univalent functions. (English) Zbl 0374.30013


MSC:

30C50 Coefficient problems for univalent and multivalent functions of one complex variable
30C45 Special classes of univalent and multivalent functions of one complex variable (starlike, convex, bounded rotation, etc.)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Carl H. Fitzgerald, Quadratic inequalities and coefficient estimates for schlicht functions, Arch. Rational Mech. Anal. 46 (1972), 356 – 368. · Zbl 0242.30013
[2] Helmut Grunsky, Koeffizientenbedingungen für schlicht abbildende meromorphe Funktionen, Math. Z. 45 (1939), no. 1, 29 – 61 (German). · Zbl 0022.15103
[3] Yoshihisa Kubota, Coefficients of meromorphic univalent functions, Kōdai Math. Sem. Rep. 28 (1976/77), no. 2 – 3, 253 – 261. · Zbl 0354.30011
[4] Karl Löwner, Untersuchungen über schlichte konforme Abbildungen des Einheitskreises. I, Math. Ann. 89 (1923), no. 1-2, 103 – 121 (German). · JFM 49.0714.01
[5] E. Netanyahu, Extremal problems for schlicht functions in the exterior of the unit circle, Canad. J. Math. 17 (1965), 335 – 341. · Zbl 0148.30804
[6] Christian Pommerenke, Univalent functions, Vandenhoeck & Ruprecht, Göttingen, 1975. With a chapter on quadratic differentials by Gerd Jensen; Studia Mathematica/Mathematische Lehrbücher, Band XXV. · Zbl 0298.30014
[7] Glenn Schober, Univalent functions — selected topics, Lecture Notes in Mathematics, Vol. 478, Springer-Verlag, Berlin-New York, 1975. · Zbl 0306.30018
[8] G. Springer, The coefficient problem for schlicht mappings of the exterior of the unit circle, Trans. Amer. Math. Soc. 70 (1951), 421 – 450. · Zbl 0042.31402
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.