×

Homomorphisms of weighted algebras of continuous functions. (English) Zbl 0379.46014


MSC:

46E10 Topological linear spaces of continuous, differentiable or analytic functions
46J10 Banach algebras of continuous functions, function algebras
46H05 General theory of topological algebras
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] K. D. Bierstedt, Gewichtete Räume stetiger vektorwertiger Funktionen und das injective Tensorprodukt I, J. reine u. angew. Math.,259 (1973), pp. 186-210. · Zbl 0252.46039
[2] K. D. Bierstedt, Gewichtete Räume stetiger vektorwertiger Funktionen und das injective Tensorprodukt II, J. reine u. angew. Math.,260 (1973), pp. 133-146. · Zbl 0255.46025
[3] Buck, R. C., Bounded continuous functions on a locally compact space, Mich. Math. J., 5, 95-104, (1958) · Zbl 0087.31502
[4] Comfort, W. W.; Negrepontis, S., Extending continuous functions on X × Y to subsets of βX × βY, Fund. Math., 59, 1-12, (1966) · Zbl 0185.26304
[5] Dietrich, W. E., The maximal ideal space of the topological algebra C(X, E), Math. Ann., 183, 201-212, (1969) · Zbl 0169.17703
[6] Giles, R., A generalization of the strict topology, Trans. Amer. Math. Soc., 161, 467-474, (1971) · Zbl 0204.43603
[7] L. Gillman - M. Jerison,Rings of continuous functions, D. Van Nostrand (1960). · Zbl 0093.30001
[8] Hausner, A., Ideals in a certain Banach algebra, Proc. Amer. Math. Soc., 8, 246-249, (1957) · Zbl 0079.13101
[9] Hirschfeld, R. A., Function rings on Tyhonov spaces, Bull. Soc. Math. Belg., 25, 334-338, (1973) · Zbl 0289.54007
[10] Hoffmann-Jørgensen, J., A generalization of the strict topology, Math. Scand., 30, 313-323, (1972) · Zbl 0256.46036
[11] Prolla, J. B., Weighted Spaces of Vector-Valued Continuous Functions, Ann. Math. P. Appl., 89, 145-157, (1971) · Zbl 0224.46024
[12] R. C. Walker,The Stone-Čech compactification, Springer-Verlag, Berlin (1974).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.