×

zbMATH — the first resource for mathematics

Some probabilistic techniques in field theory. (English) Zbl 0381.60096

MSC:
60K35 Interacting random processes; statistical mechanics type models; percolation theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Nelson, E.: A quartic interaction in two dimensions. In: Mathematical theory of elementary particles (eds. R. Goodman, I. Segal). Cambridge: MIT Press 1966
[2] Glimm, J.: Commun. math. Phys.8, 12 (1968) · Zbl 0173.29903 · doi:10.1007/BF01646421
[3] Gallavotti, G.: Some aspects of the renormalization problems in statistical mechanics and field theory. In: Memoria Accademia dei Lincei. Preprint, IHES 1977 Gallavotti, G.: On the ultraviolet stability in statistical mechanics and field theory. In: Annali di Matematica pura e applicata. Preprint, IHES 1977
[4] Guerra, F.: Phys. Rev. Letters28, 1213 (1972) · doi:10.1103/PhysRevLett.28.1213
[5] Glimm, J., Jaffe, A.: Fortschr. Physik21, 327 (1973) · doi:10.1002/prop.19730210702
[6] Glimm, J., Jaffe, A., Spencer, T.: The particle structure of the weakly coupledP(\(\phi\))2 model and other applications. In: Lecture notes in physics, Vol. 25 (eds. G. Velo, A. Wightman), Berlin-Heidelberg-New York: Springer 1973
[7] Feldman, J.: Commun. math. Phys.37, 93 (1974) · doi:10.1007/BF01646205
[8] Magnen, J., Seneor, R.: Ann. Inst. Henri Poincaré24, 95 (1976)
[9] Magnen, J.: Thesis
[10] Feldman, J., Osterwalder, K.: Ann. Phys.97, 80 (1976) · doi:10.1016/0003-4916(76)90223-2
[11] Dobrushin, R.L., Tirozzi, B.: Commun. math. Phys.54, 173–192 (1977) · Zbl 0391.60095 · doi:10.1007/BF01614136
[12] Ruelle, D.: Commun. math. Phys.18, 127 (1970) · Zbl 0198.31101 · doi:10.1007/BF01646091
[13] Ruelle, D.: Commun. math. Phys.50, 189 (1976) · doi:10.1007/BF01609400
[14] Dinaburg, R., Sinai, Ya.G.: to appear
[15] Simon, B.: TheP()2 euclidean quantum field theory. Princeton: Princeton University Press 1974
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.