×

zbMATH — the first resource for mathematics

Relative invariants of finite groups generated by pseudoreflections. (English) Zbl 0383.20029

MSC:
20G05 Representation theory for linear algebraic groups
20C30 Representations of finite symmetric groups
20H20 Other matrix groups over fields
15A72 Vector and tensor algebra, theory of invariants
14M10 Complete intersections
16W99 Associative rings and algebras with additional structure
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bourbaki, N, Groupes et algèbres de Lie, (), Ch. 4, 5, et 6 · Zbl 0483.22001
[2] Burnside, W, Theory of groups of finite order, (1955), Dover New York · Zbl 0064.25105
[3] Chevalley, C, Invariants of finite groups generated by reflections, Amer. J. math., 77, 778-782, (1955) · Zbl 0065.26103
[4] {\scL. Flatto}, Invariants of finite reflection groups, to appear. · Zbl 0401.20041
[5] Hochster, M; Eagon, J.A, Cohen-Macaulay rings, invariant theory, and the generic perfection of determinantal loci, Amer. J. math., 93, 1020-1058, (1971) · Zbl 0244.13012
[6] Molien, T, Über die invarianten der linearen substitutionsgruppen, Sitzungsber. König. preuss. akad. wiss., 1152-1156, (1897) · JFM 28.0115.01
[7] Shephard, G.C; Todd, J.A, Finite unitary reflection groups, Canad. J. math., 6, 274-304, (1954) · Zbl 0055.14305
[8] Sloane, N.J.A, Error-correcting codes and invariant theory: new applications of a nineteenth-century technique, Amer. math. monthly, 84, 82-107, (1977) · Zbl 0357.94014
[9] Solomon, L, Invariants of finite reflection groups, Nagoya math. J., 22, 57-64, (1963) · Zbl 0117.27104
[10] Solomon, L, Invariants of Euclidean reflection groups, Trans. amer. math. soc., 113, 274-286, (1964) · Zbl 0142.26302
[11] Springer, T.A, Regular elements of finite reflection groups, Invent. math., 25, 159-198, (1974) · Zbl 0287.20043
[12] {\scR. Stanley}, Hilbert functions of graded algebras, Advances in Math., to appear. · Zbl 0384.13012
[13] Steinberg, R, Invariants of finite reflection groups, Canad. J. math., 12, 616-618, (1960) · Zbl 0099.36802
[14] Watanabe, K, Certain invariant subrings are Gorenstein, I, Osaka J. math., 11, 1-8, (1974) · Zbl 0281.13007
[15] Watanabe, K, Certain invariant subrings are Gorenstein, II, Osaka J. math., 11, 379-388, (1974) · Zbl 0292.13008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.