zbMATH — the first resource for mathematics

Wave operators for the Schrödinger equation with strongly singular short-range potentials. (English) Zbl 0383.47008

47A40 Scattering theory of linear operators
Full Text: DOI
[1] Kupsch J. and Sandhas W., Commun. Math. Phys. 2, 147-154 (1966). · Zbl 0139.46002 · doi:10.1007/BF01773349
[2] Kato T. and Kuroda S., in F.E. Browder (ed.), Functional Analysis and Related Fields, Springer Verlag, Berlin, 1970, pp. 99-131. · Zbl 0224.47004
[3] Kato T., Proceedings of the International Conference on Functional Analysis and Related Topics, Tokyo, April 1969, Tokyo University Press, Tokyo, 1970, pp. 206-215.
[4] Simon B., Quantum Mechanics for Hamiltonians defined as Quadratic Forms, Princeton University Press, Princeton, 1971. · Zbl 0232.47053
[5] Birman M., Dokl. Akad. Nauk. SSSR 147, 1008-1009 (1962).
[6] Lavine R., Commun. Math. Phys. 20, 301-323 (1971). · Zbl 0207.13706 · doi:10.1007/BF01646626
[7] Lavine R., J. Funct. Anal. 5, 368-382 (1970). · Zbl 0192.61201 · doi:10.1016/0022-1236(70)90015-7
[8] Robinson, D.W., Ann. I.H.P. 21 (1974).
[9] Semenov, Yu., ?On the Convergence of Hermitian Forms bounded from below associated with Schr?dinger Operators?, to appear in Studia Math.
[10] Kovalenko, V.F. and Semenov, Yu., ?On Generalized Eigenfunction Expansion for Some Schr?dinger Operators with Singular Potentials?, to appear in Uspekhi Mat. Nauk (USSR).
[11] Ladyzhenskaya O.A., Solonnikov V.A., and Ural’tseva N.N., Linear and Quasilinear Equations of Parabolic Type, Nauka, Moskow, 1967.
[12] Kac M., Probability and Related Topics in Physical Sciences, Interscience Publ., New York, 1959. · Zbl 0087.33003
[13] Pearson D.B., Helv. Phys. Acta 48, 639 (1975).
[14] Deift, P. and Simon, B., ?On the Decoupling of Finite Singularities from the Question of Asymptotic Completeness in Two-body Quantum Systems?, preprint, Princeton University. · Zbl 0344.47007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.