×

zbMATH — the first resource for mathematics

Variational inequalities, complementarity problems, and duality theorems. (English) Zbl 0383.49005

MSC:
49J40 Variational inequalities
49J35 Existence of solutions for minimax problems
49J45 Methods involving semicontinuity and convergence; relaxation
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bourbaki, N, Espaces vectoriels topologiques, (1967), Hermann Paris, Chap. 3, 4, and 5 · Zbl 0066.35301
[2] Brézis, H; Nirenberg, L; Stampacchia, G, A remark on Ky Fan’s minimax principle, Boll. un. mat. ital., 6, 293-300, (1972) · Zbl 0264.49013
[3] Fan, K, A generalization of the alaoglu-bourbaki theorem and its applications, Math. Z., 88, 48-60, (1965) · Zbl 0135.34402
[4] Fan, K, A minimax inequality and applications, () · Zbl 0302.49019
[5] Karamardian, S, The generalized complementarity problem, J. optimization theory appl., 8, 161-168, (1971) · Zbl 0218.90052
[6] \scS. Karamardian, Complementarity problems over cones with monotone and pseudomonotone maps, to appear. · Zbl 0304.49026
[7] Köthe, G, Topological vector spaces, (1969), Springer-Verlag Berlin/Heidelberg/New York
[8] Lemke, C.E, Recent results on complementarity problems, () · Zbl 0227.90043
[9] Moré, J.J, Classes of functions and feasibility conditions in nonlinear complementarity problems, Cornell university technical reports 73-174, (1973), Ithaca, N. Y. · Zbl 0291.90059
[10] Moreau, J.J, Sur la fonction polaire d’une fonction semicontinue supérieurement, C. R. acad. sci. Paris, 258, 1128-1130, (1964) · Zbl 0144.30501
[11] Moreau, J.J, Fonctionelles convexes, () · Zbl 0343.49021
[12] Rockafellar, R.T, Duality and stability in extremum problems involving convex functions, Pacific J. math., 21, 167-187, (1967) · Zbl 0154.44902
[13] Stampacchia, G, Variational inequalities, () · Zbl 0152.34601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.