×

Towards a theory of domination. (English) Zbl 0384.05051


MSC:

05C99 Graph theory
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Aigner, Studia Sci. Math. Hungar. 5 pp 303– (1970)
[2] Theory of Graphs and its Applications, Methuen, London, 1962.
[3] Graphs and Hypergraphs, North-Holland, Amsterdam, 1973.
[4] Billera, J. Comb. Theory 11B pp 243– (1971)
[5] Chartrand, J. Comb. Theory 6 pp 271– (1969)
[6] Chartrand, J. Comb. Theory 10 pp 12– (1971)
[7] and , ”Independence Graphs,” Proc, of 5th S.E. Conference on Combinatorics, Graph Theory and Computing, Boca Raton, Florida, 1974. · Zbl 0305.05114
[8] and , ”Optimal Domination in Graphs,” IEEE Trans. Circuits & Systems, CAS-22, 1975, pp. 41–44.
[9] and , ”Interpolation Systems,” Proc, of 3rd S.E. Conference on Combinatorics, Graph Theory and Computing, 1972, pp. 117–130.
[10] Edmonds, J. Comb. Theory 8 pp 299– (1970)
[11] ”Independence and Covering Numbers of Line Graphs and Total Graphs,” Proof Techniques in Graph Theory, ed., Academic Press, New York, 1969. · Zbl 0193.24203
[12] Graph Theory, Addison-Wesley, Reading, Massachusetts, 1969.
[13] and , ”Relations du Type Nordhaus-Gaddum Pour le Nombre d’Absorption d’un Graphe Simple,” C. R. Acad. Sc. Paris, Series A, t 274, 1972, pp. 728–730. · Zbl 0226.05121
[14] Kalbfleisch, J. Comb. Theory 11A pp 233– (1971)
[15] Introduction to Combinatorial Mathematics, McGraw-Hill, New York, 1968. · Zbl 0188.03801
[16] Lovász, Discrete Math 2 pp 253– (1972)
[17] Nieminen, J. Inst. Maths. Applics. 14 pp 183– (1974)
[18] Nordhaus, Amer. Math. Monthly 63 pp 175– (1956)
[19] Theory of Graphs, Amer. Math. Soc. Colloq. Publ., 38, Providence, 1962.
[20] Vizing, Doklady A. N. 164 pp 729– (1965)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.