×

Über das Dekompositionsverhalten gewisser modularer Darstellungen halbeinfacher Gruppen und ihrer Lie-Algebren. (German) Zbl 0386.20018


MSC:

20G05 Representation theory for linear algebraic groups
20G30 Linear algebraic groups over global fields and their integers
20C20 Modular representations and characters
17B35 Universal enveloping (super)algebras
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Brauer, R, Sur la multiplication des caractéristiques des groupes continus et semi-simple, C. R. acad. sci. Paris, Sér. A, 204, 1784-1786, (1937) · JFM 63.0081.01
[2] Carter, R.W; Lusztig, G, On the modular representations of the general linear and symmetric groups, Math. Z., 136, 193-242, (1974) · Zbl 0298.20009
[3] Hulsurkar, S.G, Proof of Verma’s conjecture on Weyl’s dimension polynomial, Invent. math., 27, 45-52, (1974) · Zbl 0298.17005
[4] Humphreys, J.E, Ordinary and modular representations of Chevalley groups, () · Zbl 0919.17013
[5] Humphreys, J.E; Verma, D.-N, Projective modules for finite Chevalley groups, Bull. amer. math. soc., 79, 467-468, (1973) · Zbl 0258.20007
[6] Jantzen, J.C, Zur charakterformel gewisser darstellungen halbeinfacher gruppen und Lie-algebren, Math. Z., 140, 127-149, (1974) · Zbl 0279.20036
[7] Jantzen, J.C, Darstellungen halbeinfacher gruppen und kontravariante formen, J. reine u. angew. math., 290, 117-141, (1977) · Zbl 0342.20022
[8] Kac, V; Weisfeiler, B, Coadjoint action of a semi-simple algebraic group and the centre of the enveloping algebra in characteristic p, Indag. math., 38, 136-151, (1976) · Zbl 0324.17001
[9] Pittie, H.V, Homogeneous vector bundles on homogeneous spaces, Topology, 11, 199-203, (1972) · Zbl 0229.57017
[10] Steinberg, R, Representations of algebraic groups, Nagoya math. J., 22, 33-56, (1963) · Zbl 0271.20019
[11] Verma, D.-N, The Rôle of the affine Weyl groups, (), 653-705
[12] Winter, P.W, On the modular representation theory of algebraic Chevalley groups, Ph.D. thesis, (1976), Warwick
[13] Steinberg, R, On a theorem of pittie, Topology, 14, 173-177, (1975) · Zbl 0318.22010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.