zbMATH — the first resource for mathematics

The connections between the order of smoothness of a surface and its metric. (English) Zbl 0386.53014

53B25 Local submanifolds
53B20 Local Riemannian geometry
Full Text: DOI
[1] M. L. Gromov and V. A. Rokhlin, ?Embeddings and immersion in Riemannian geometry,? Usp. Matem. Nauk,25, No. 5, 3-62 (1970). · Zbl 0202.21004
[2] É. G. Poznyak, ?Isothermic immersions of two-dimensional Riemannian metrics in Euclidean space,? Usp. Matem. Nauk,28, No. 4, 47-76 (1973). · Zbl 0289.53004
[3] S. Z. Shefel’, ?Completely regular isometric immersions in Euclidean space,? Sibirsk. Matem. Zh.,11, No. 2, 442-460 (1970).
[4] A. Wintner, ?On the local role of the theory of logarithmic potential in differential geometry,? Amer. J. Math.,75, No. 4, 679-689 (1953). · Zbl 0051.38303
[5] H. Jacobowitz, ?Implicit function theorems and isometric embeddings,? Ann. Math.,95, No. 2, 191-225 (1972). · Zbl 0231.46068
[6] V. A. Fok, The Theory of the Space of Time and Gravitation [in Russian], Fizmatgiz, Moscow (1961).
[7] M. A. Lavrent’ev, ?Sur une classe, de représentation continues,? Mat. Sbornik,42, No. 4, 407-423 (1935).
[8] S. S. Chern, P. Hartman, and A. Wintner, ?On isothermic coordinates,? Comment. Mat. Helv.,28, No. 4, 301-309 (1954). · Zbl 0056.40206
[9] I. N. Vekua, Generalized Analytic Functions [in Russian], Fizmatgiz, Moscow (1959). · Zbl 0092.29703
[10] Yu. G. Reshetnyak, ?Isothermic coordinates in manifolds of bounded curvature,? Sibirsk. Matem. Zh.,1, No. 1, 86-116 (1960);1, No. 2, 248-276 (1960).
[11] L. Bers, F. John, and M. Schechter, Partial Differential Equations [Russian translation], Mir, Moscow (1966). · Zbl 0143.32403
[12] O. A. Ladyzhenskaya and N. N. Ural’tseva, Linear and Quasilinear Equations of Elliptic Type [in Russian], Nauka, Moscow (1964).
[13] E. Calabi and P. Hartman, ?On the smoothness of isometries,? Duke Math. J.,37, No. 4, 741-751 (1970). · Zbl 0203.54304
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.