×

Planar cubic hypohamiltonian and hypotraceable graphs. (English) Zbl 0388.05033


MSC:

05C45 Eulerian and Hamiltonian graphs
05C10 Planar graphs; geometric and topological aspects of graph theory
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Balaban, A.T; Davies, R; Harary, F; Hill, A; Westwick, R, Cubic identity graphs and planar graphs derived from trees, J. austral. math. soc., 11, 207-215, (1970) · Zbl 0248.05121
[2] Bondy, J.A; Murty, U.S.R, Graph theorey with applications, (1976), Macmillan London · Zbl 1134.05001
[3] Chvátal, V; Klarner, D.A; Knuth, D.E, Selected combinatorial research problems, (1972), Stanford Univ. Press Stanford, Calif, Problem 19
[4] Chvátal, V, Flip-flops in Hypohamiltonian graphs, Canad. math. bull., 16, 33-41, (1973) · Zbl 0253.05142
[5] Collier, J.B; Schmeichel, E.F, New flip-flop constructions for Hypohamiltonian graphs, Discrete math., 18, 265-271, (1977) · Zbl 0367.05046
[6] Collier, J.B; Schmeichel, E.F, Systematic searches for Hypohamiltonian graphs, Networks, 8, 193-200, (1978) · Zbl 0384.05046
[7] Doyen, J; Van Diest, V, New families of Hapohamiltonian graphs, Discrete math., 13, 225-236, (1975) · Zbl 0312.05114
[8] Faulkner, G.B; Younger, D.H, Non-Hamiltonian cubic planar maps, Discrete math., 7, 67-74, (1974) · Zbl 0271.05106
[9] Grünbaum, B, Convex polytopes, (1967), Wiley London · Zbl 0163.16603
[10] Grünbaum, B, Vertices missed by longest paths or circuits, J. combinatorial theory, 17, 31-38, (1974) · Zbl 0259.05120
[11] Herz, J.-C; Duby, J.-J; Vigué, F, Recherche systématique des graphes hypohamiltonien, (), 153-160 · Zbl 0196.56102
[12] Tait, P.G, Remarks on colourings of maps, (), 729 · JFM 12.0409.02
[13] Thomassen, C, Planar and infinite Hypohamiltonian and hypotraceable graphs, Discrete math., 14, 377-389, (1976) · Zbl 0322.05130
[14] Tutte, W.T, On Hamiltonian circuits, J. London math. soc., 21, 98-101, (1946) · Zbl 0061.41306
[15] Whitney, H, A theorem on graphs, Ann. of math., 32, 378-390, (1931) · JFM 57.0727.03
[16] Zamfirescu, T, On longest paths and circuits in graphs, Math. scand., 38, 211-239, (1976) · Zbl 0337.05127
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.