×

Normal and quasinormal composition operators. (English) Zbl 0391.47018


MSC:

47B38 Linear operators on function spaces (general)
47B15 Hermitian and normal operators (spectral measures, functional calculus, etc.)
47B20 Subnormal operators, hyponormal operators, etc.
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] N. Dunford and J. T. Schwartz, Linear operators. I, Interscience, New York, 1958. · Zbl 0084.10402
[2] Paul R. Halmos, A Hilbert space problem book, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. · Zbl 0144.38704
[3] Eric A. Nordgren, Composition operators, Canad. J. Math. 20 (1968), 442 – 449. · Zbl 0161.34703
[4] William C. Ridge, Spectrum of a composition operator, Proc. Amer. Math. Soc. 37 (1973), 121 – 127. · Zbl 0299.47003
[5] H. L. Royden, Real analysis, The Macmillan Co., New York; Collier-Macmillan Ltd., London, 1963. · Zbl 0121.05501
[6] Raj Kishor Singh, Compact and quasinormal composition operators, Proc. Amer. Math. Soc. 45 (1974), 80 – 82. · Zbl 0289.47016
[7] Raj Kishor Singh, Normal and Hermitian composition operators, Proc. Amer. Math. Soc. 47 (1975), 348 – 350. · Zbl 0295.47026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.