×

zbMATH — the first resource for mathematics

Nonconforming finite element methods for eigenvalue problems in linear plate theory. (English) Zbl 0394.65035

MSC:
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N25 Numerical methods for eigenvalue problems for boundary value problems involving PDEs
35P15 Estimates of eigenvalues in context of PDEs
74S05 Finite element methods applied to problems in solid mechanics
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Bramble, J.H., Osborn, J.E.: Rate of convergence estimates for nonselfadjoint eigenvalue approximations. Math. Comp.27, 525-549 (1973) · Zbl 0305.65064
[2] Ciarlet, P.G.: Conforming and nonconforming finite element methods for solving the plate problem. In: Conference on the Numerical Solution of Differential Equations (G.A. Watson, ed.), pp. 21-31. Berlin: Springer 1974 · Zbl 0285.65072
[3] Grigorieff, R.D.: Diskrete Approximation von Eigenwertproblemen. Numer. Math.24, 355-374, 415-433 (1975) · Zbl 0391.65020
[4] Kondratiev, V.: Boundary value problems for elliptic equations with conical or angular points. Trans. Moscow Math. Soc.16, 227-313 (1967) · Zbl 0194.13405
[5] Lascaux, P., Lesaint, P.: Some nonconforming finite elements for the plate bending problem. R.A.I.R.O.9, R-1, 9-53 (1975) · Zbl 0319.73042
[6] Melzer, H.: Approximation von Eigenfrequenzen und kritischen Lasten dünner Platten mit Hilfe konformer und nicht konformer finiter Elemente. Diplomarbeit, Universität Bonn 1978
[7] Nitsche, J.: Convergence of nonconforming methods. In: Mathematical Aspects of Finite Elements in Partial Differential Equations (C. de Boor, ed.), pp. 15-53. New York: Academic Press 1974
[8] Osborn, J.E.: Spectral approximation for compact operators. Math. Comp.29, 712-725 (1975) · Zbl 0315.35068
[9] Rannacher, R.: Punktweise Konvergenz der Methode der finiten Elemente beim Plattenproblem. Manuscripta Math.19, 401-416 (1976) · Zbl 0383.65061
[10] Rannacher, R.: Finite element approximation of simply supported plates and the Babu?ka paradox. Z. Angew. Math. Mech.59, 73-76 (1979) · Zbl 0411.73007
[11] Rannacher, R.: On nonconforming and mixed finite element methods for plate bending problems ? The linear case-. To appear in: R.A.I.R.O. Sér. Rouge Anal. Numér. · Zbl 0425.35042
[12] Strang, G.: Approximation in the finite element method. Numer. Math.19, 81-98 (1972) · Zbl 0221.65174
[13] Strang, G., Fix, G.: An Analysis of the Finite Element Method. Englewood Cliffs: Prentice-Hall 1973 · Zbl 0356.65096
[14] Stummel, F.: Diskrete Konvergenz linearer Operatoren. I. Math. Ann.190, 45-92 (1970). II. Math. Z.120, 231-264 (1971) · Zbl 0203.45301
[15] Stummel, F.: Remarks concerning the patch test for nonconforming finite elements. Z. Angew. Math. Mech.58, 124-126 (1978) · Zbl 0394.65034
[16] Stummel, F.: The generalized patch test. SIAM J. Numer. Anal.16, 449-471 (1979) · Zbl 0418.65058
[17] Timoshenko, S., Woinowski-Krieger, S.: Theory of Plates and Shells. London: McGraw-Hill 1959
[18] Zienkiewicz, O.C.: The Finite Element Method in Engineering Science. London: McGraw-Hill 1971 · Zbl 0237.73071
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.