×

Ein planarer hypohamiltonscher Graph mit 57 Knoten. (German) Zbl 0396.05032


MSC:

05C45 Eulerian and Hamiltonian graphs
05C10 Planar graphs; geometric and topological aspects of graph theory
PDF BibTeX XML Cite
Full Text: DOI EuDML

References:

[1] Grünbaum, B.: Vertices missed by longest paths or circuits. J. Combinatorial Theory Ser. A17, 31-38 (1974) · Zbl 0278.05111
[2] Sachs, H.: Ein von Kozyrev und Grin erg angegebener nicht-hamiltonscher kubischer planarer Graph. In: Beiträge zur Graphentheorie, pp. 127-130. Leipzig: Teubner 1968 · Zbl 0169.26402
[3] Thomassen, C.: Planar and infinite hypohamiltonian and hypotraceable graphs. Discrete Math.14, 377-389 (1976) · Zbl 0322.05130
[4] Tutte, W.T.: Non-hamiltonian planar maps. In: Graph theory and computing, pp. 295-301. Read, R.C., ed.. New York: Academic Press 1972
[5] Zamfirescu, T.: A two-connected planar graph without concurrent longest paths. J. Combinatorial Theory Ser. B13, 116-121 (1972) · Zbl 0243.05110
[6] Zamfirescu, T.: On longest paths and circuits in graphs. Math. Scand.38, 211-239 (1976) · Zbl 0337.05127
[7] Zamfirescu, T.: L’histoire et l’état présent des bornes connues pourP k j , C k j , P k j , etC k j . Cahiers Centre Études Recherche Opér.17, 427-439 (1975)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.