×

zbMATH — the first resource for mathematics

A geometric method in nonlinear programming. (English) Zbl 0396.90078

MSC:
90C30 Nonlinear programming
90C90 Applications of mathematical programming
65H10 Numerical computation of solutions to systems of equations
49M15 Newton-type methods
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Zoutendijk, G.,Method of Feasible Directions, A Survey in Linear and Nonlinear Programming, American Elsevier Publishing Company, Amsterdam, Holland, 1960. · Zbl 0097.35408
[2] Rosen, J. B.,The Gradient Projection Method for Nonlinear Programming: Part II, Nonlinear Constraints, SIAM Journal on Applied Mathematics, Vol. 9, pp. 514-532, 1961. · Zbl 0231.90048 · doi:10.1137/0109044
[3] Abadie, J., andCarpentier, J.,Generalization of the Wolfe Reduced Gradient Method to the Case of Nonlinear Constraints, Optimization, Edited by R. Fletcher, Academic Press, London, England, 1969. · Zbl 0254.90049
[4] Tanabe, K.,Algorithm for Constrained Maximization Technique for Nonlinear Programming, Proceedings of the Second Hawaii International Conference on System Sciences, pp. 487-490, Honolulu, Hawaii, 1969.
[5] Tanabe, K.,An Algorithm for Constrained Maximization in Nonlinear Programming, Institute of Statistical Mathematics, Research Memorandum No. 31, 1969. · Zbl 0306.90064
[6] Tanabe, K.,An Algorithm for Constrained Maximization in Nonlinear Programming, Journal of the Operations Research Society of Japan, Vol. 17, pp. 184-201, 1974. · Zbl 0306.90064
[7] Gruver, W. A., andEngersbach, N. H.,A Variable-Metric Algorithm for Constrained Minimization Based on an Augmented Lagrangian, International Journal of Numerical Methods in Engineering, Vol. 10, pp. 1047-1056, 1976. · Zbl 0327.65055 · doi:10.1002/nme.1620100506
[8] Carroll, C. W.,The Created Response Surface Technique for Optimizing Nonlinear Restricted Systems, Operations Research, Vol. 9, p. 169, 1961. · Zbl 0111.17004 · doi:10.1287/opre.9.2.169
[9] Fiacco, A. V., andMcCormick, G. P.,Nonlinear Programming: Sequential Unconstrained Minimization Techniques, John Wiley and Sons, New York, New York, 1968. · Zbl 0193.18805
[10] Hestenes, M. R.,Multiplier and Gradient Methods, Journal of Optimization Theory and Applications, Vol. 4, pp. 303-320, 1969. · Zbl 0174.20705 · doi:10.1007/BF00927673
[11] Powell, M. J. D.,A Method for Nonlinear Constraints in Minimization Problems, Optimization, Edited by R. Fletcher, Academic Press, London, England, 1969. · Zbl 0194.47701
[12] Fletcher, R.,A Class of Methods for Nonlinear Programming with Termination and Convergence Properties, Integer and Nonlinear Programming, Edited by J. Abadie, North Holland Publishing Company, Amsterdam, Holland, 1970. · Zbl 0332.90039
[13] Fletcher, R., andLill, S. A.,A Class of Methods for Nonlinear Programming: Part II, Computational Experience, Nonlinear Programming, Edited by J. B. Rosen et al., Academic Press, New York, New York, 1970. · Zbl 0258.90044
[14] Fletcher, R. A Class of Methods for Nonlinear Programming: Part III, Rate of Convergence, Numerical Methods for Nonlinear Optimization, Edited by F. A. Lootsma, Academic Press, London, England, 1972. · Zbl 0277.90066
[15] Fletcher, R.,An Exact Penalty Function for Nonlinear Programming with Inequalities, Mathematical Programming, Vol. 5, pp. 129-150, 1973. · Zbl 0278.90063 · doi:10.1007/BF01580117
[16] Martensson, K.,A New Approach to Constrained Function Optimization, Journal of Optimization Theory and Applications, Vol. 12, pp. 531-554, 1973. · Zbl 0253.49024 · doi:10.1007/BF00934776
[17] Rockafellar, R. T.,The Multiplier Method of Hestenes and Powell Applied to Convex Programming, Journal of Optimization Theory and Applications, Vol. 12, pp. 555-562, 1973. · Zbl 0254.90045 · doi:10.1007/BF00934777
[18] Rupp, R. D.,On the Combination of the Multiplier Method of Hestenes and Powell with Newton’s Method, Journal of Optimization Theory and Applications, Vol. 15, pp. 167-187, 1975. · Zbl 0272.65046 · doi:10.1007/BF02665291
[19] Bertsekas, D. P.,Combined Primal-Dual Penalty Methods for Constrained Minimization, SIAM Journal on Control, Vol. 13, pp. 521-544, 1975. · Zbl 0297.90078 · doi:10.1137/0313030
[20] Bertsekas, D. P.,Multiplier Methods: A Survey, Automatica, Vol. 12, pp. 133-145, 1976. · Zbl 0321.49027 · doi:10.1016/0005-1098(76)90077-7
[21] Tapia, R. A.,Diagonalized Multiplier Methods and Quasi-Newton Methods for Constrained Optimization (to appear). · Zbl 0336.65034
[22] Kelley, H. J., Denham, W. F., Johnson, I. L., andWheatley P. O.,An Accelerated Gradient Method for Parameter Optimization with Nonlinear Constraints, Journal of the Astronautical Sciences, Vol. 13, pp. 166-169, 1966.
[23] Bard, Y., andGreenstadt, J. L.,A Modified Newton Method for Optimization with Equality Constraints, Optimization, Edited by R. Fletcher, Academic Press, London, England, 1968.
[24] Kwakernaak, H., andStrijbos, R. C. W.,Extremization of Functions with Equality Constraints, Mathematical Programming, Vol. 2, pp. 279-295, 1972. · Zbl 0346.90044 · doi:10.1007/BF01584549
[25] Huang, Y. H., andNaqvi, S.,Unconstrained Approach to the Extremization of Constrained Functions, Journal of Mathematical Analysis and Applications, Vol. 39, pp. 360-374, 1972. · Zbl 0238.49019 · doi:10.1016/0022-247X(72)90208-9
[26] Huang, H. Y., andAggarwal, A. K.,A Class of Quadratically Convergent Algorithms for Constrained Function Minimization, Journal of Optimization Theory and Applications, Vol. 16, pp. 447-485, 1975. · Zbl 0291.90061 · doi:10.1007/BF00933853
[27] Dennis, J. E., andMore, J. J.,A Characterization of Superlinear Convergence and Its Application to Quasi-Newton Methods, Mathematics of Computation, Vol. 28, pp. 549-560, 1974. · Zbl 0282.65042 · doi:10.1090/S0025-5718-1974-0343581-1
[28] McCormick, G. P.,Penalty Function versus Nonpenalty Function Methods for Constrained Nonlinear Programmining Problems, Mathematical Programming, Vol. 1, 217-238, 1971. · Zbl 0242.90051 · doi:10.1007/BF01584087
[29] Yamashita, H.,Differential Equation Approach to Nonlinear Programming, Computation and Analysis, Vol. 7, pp. 11-38, 1976.
[30] Tanabe, K.,Analog-Type Nonlinear Programming (in Japanese), Mathematical Sciences, Vol. 157, pp. 45-51, 1976.
[31] Branin, F. H.,Widely Convergent Method for Finding Multiple Solutions of Simultaneous Nonlinear Equations, IBM Journal of Research and Development, Vol. 16, pp. 504-521, 1972. · Zbl 0271.65034 · doi:10.1147/rd.165.0504
[32] Auslander, L., andMacKenzie, R. E.,Introduction to Differentiable Manifolds, McGraw-Hill, Book Company, New York, New, York, 1963. · Zbl 0184.24905
[33] Matsushima, Y.,Differentiable Manifolds, Marcel Dekker, New York, New York, 1972.
[34] Abraham, R., andRobbin, J.,Transversal Mapping and Flows, W. A. Benjamin, New York, 1967.
[35] Bhatia, N. P., andSzegö, G. P.,Stability Theory of Dynamical Systems, Springer-Verlag, New York, New York, 1970.
[36] Hancock, H.,Theory of Maxima and Minima, Dover Publications, New York, New York, 1960. · Zbl 0090.27501
[37] Lambert, J. D.,Compositional Methods in Ordinary Differential Equations, John Wiley and Sons, London, England, 1973. · Zbl 0258.65069
[38] Chao, K. S., Liu, D. K., andPan, C. T.,A Systematic Search Method for Obtaining Multiple Solutions of Simultaneous Nonlinear Equations, IEEE Transactions on Circuits and Systems, Vol. CAS-22, pp. 748-753, 1975. · doi:10.1109/TCS.1975.1084122
[39] Tanabe, K.,Continuous Newton-Raphson Method for Solving an Under-determined System of Nonlinear Equations, Nonlinear Analysis, Theory, Methods, and Applications, Vol. 3, pp. 495-503, 1979. · Zbl 0435.65048 · doi:10.1016/0362-546X(79)90064-6
[40] Tanabe, K.,Global Analysis of Continuous Analogues of the Levenberg-Marquardt and Newton-Raphson Methods for Solving Nonlinear Equations, Brookhaven National Laboratory, Report No. 24022, AMD-789, 1978. · Zbl 0575.65042
[41] Mangasarian, O. L.,Nonlinear Programming, McGraw-Hill Book Company, New York, New York, 1968.
[42] Afriat, S. N.,Orthogonal and Oblique Projectors and the Characteristics of Pairs of Vector Spaces, Proceedings of the Cambridge Philosophical Society, Vol. 53, pp. 800-816, 1957. · doi:10.1017/S0305004100032916
[43] Kammerer, W. J., andNashed, M. Z.,On the Convergence of the Gradient Method for Singular Linear Operator Equations, SIAM Journal on Numerical Analysis, Vol. 9, pp. 165-181, 1972. · Zbl 0243.65026 · doi:10.1137/0709016
[44] Gill, P. E., Golub, G. H., Murray, W., andSaunders, M. A.,Methods for Modifying Matrix Factorizations, Mathematics of Computation, Vol. 28, pp. 505-535, 1974. · Zbl 0289.65021 · doi:10.1090/S0025-5718-1974-0343558-6
[45] Tanabe, K.,A Geometric Method in Nonlinear Programming, Stanford University Computer Science Department, Report No. STAN-CS-643, 1977.
[46] Boggs, P. T.,The Solution of Nonlinear Systems of Equations by A-Stable Integration Techniques, SIAM Journal on Numerical Analysis, Vol. 8, pp. 767-785, 1971. · Zbl 0223.65047 · doi:10.1137/0708071
[47] Tanabe, K.,Differential Geometric Approach to Extended GRG Methods with Enforced Feasibility in Nonlinear Programming: Global Analysis, Brookhaven National Laboratory, Report No. 24497, AMD-797, 1978. · Zbl 0507.90079
[48] Tanabe, K.,Differential Geometric Methods in Nonlinear Programming, Applied Nonlinear Analysis, Edited by V. Lakshmikantham, Academic Press, New York, New York, 1979. · Zbl 0452.49033
[49] Tanabe, K.,Differential Geometric Methods for Solving Nonlinear Constrained Optimization Problems and a Related System of Nonlinear Equations: Global Analysis and Implementation, Proceedings of the International Congress on Numerical Methods for Engineering, Paris, France (to appear). · Zbl 0452.49033
[50] Tanabe, K.,A Unified Theory of Feasibility-Improving Gradient Acute Projection Methods for Nonlinear Constrained Optimization, Brookhaven National Laboratory (to appear). · Zbl 0507.65024
[51] Miele, A., Huang, H. Y., andHeideman, J. C.,Sequential Gradient-Restoration Algorithm for the Minimization of Constrained Functions, Ordinary and Conjugate Gradient Versions, Journal of Optimization Theory and Applications, Vol. 4, pp. 213-243, 1969. · Zbl 0174.14403 · doi:10.1007/BF00927947
[52] Miele, A., Moseley, P. E., Levy, A. V., andCoggins, G. M.,On The Method of Multipliers for Mathematical Programming Problems, Journal of Optimization Theory and Applications, Vol. 10, pp. 1-33, 1972. · Zbl 0236.90063 · doi:10.1007/BF00934960
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.