×

zbMATH — the first resource for mathematics

A recursive method of construction of resolvable BIB-designs. (English) Zbl 0398.05005
MSC:
05A15 Exact enumeration problems, generating functions
05A19 Combinatorial identities, bijective combinatorics
11B39 Fibonacci and Lucas numbers and polynomials and generalizations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] M. Hall, Combinatorial Theory, Wiley (1975).
[2] H. Hanani, ”The existence and construction of balanced incomplete block designs,” Ann. Math. Stat.,32, No. 2, 361–386 (1961). · Zbl 0107.36102 · doi:10.1214/aoms/1177705047
[3] D. K. Ray-Chaudhuri and R. M. Wilson, ”Solution of Kirkman’s school girl problem,” in: Proceedings of Symposia on Pure Mathematics, 19, Combinatorics, Am. Math. Soc., Providence (1971), pp. 187–203.
[4] H. Hanani, D. K. Ray-Chaudhuri, and R. M. Wilson, ”On resolvable designs,” Discrete Math.,3, 343–357 (1972). · Zbl 0263.05016 · doi:10.1016/0012-365X(72)90091-X
[5] D. K. Ray-Chaudhuri and R. M. Wilson, ”The existence of resolvable block designs,” in: A Survey of Combinatorial Theory, Amsterdam (1973), pp. 361–375.
[6] B. T. Rumov, ”Some embedding theorems for block designs balanced with respect to pairs,” Mat. Zametki,16, No. 1, 173–184 (1974).
[7] B. T. Rumov, ”On a method of construction of generalized difference sets,” Mat. Zametki,15, No. 4, 551–560 (1974). · Zbl 0309.05015
[8] B. T. Rumov, ”On the construction of block designs from elements of the ring of residues modulo a composite number,” Mat. Zametki,10, No. 6, 649–658 (1971).
[9] S. Kageyama, ”A survey of resolvable solution of balanced incomplete block designs,” Internat. Statist. Rev.,40, No. 3, 269–273 (1972). · Zbl 0251.05012 · doi:10.2307/1402466
[10] A. L. Dulmage, D. M. Johnson, and N. S. Mendelsohn, ”Orthomorphisms of groups and orthogonal Latin squares, I,” Canad. J. Math.,13, 356–372 (1961). · Zbl 0097.25102 · doi:10.4153/CJM-1961-031-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.