×

zbMATH — the first resource for mathematics

The Diophantine problem for polynomial rings and fields of rational functions. (English) Zbl 0399.10048

MSC:
11U05 Decidability (number-theoretic aspects)
03B25 Decidability of theories and sets of sentences
11C08 Polynomials in number theory
13F20 Polynomial rings and ideals; rings of integer-valued polynomials
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] James Ax, On the undecidability of power series fields, Proc. Amer. Math. Soc. 16 (1965), 846. · Zbl 0199.03003
[2] Joseph Becker and Leonard Lipshitz, Remarks on the elementary theories of formal and convergent power series, Fund. Math. 105 (1979/80), no. 3, 229 – 239. Joseph Becker and Leonard Lipshitz, Errata to the paper: ”Remarks on the elementary theories of formal and convergent power series”, Fund. Math. 112 (1981), no. 3, 241. · Zbl 0526.13016
[3] J. W. S. Cassels, Diophantine equations with special reference to elliptic curves, J. London Math. Soc. 41 (1966), 193 – 291. · Zbl 0138.27002 · doi:10.1112/jlms/s1-41.1.193 · doi.org
[4] Martin Davis, Hilbert’s tenth problem is unsolvable, Amer. Math. Monthly 80 (1973), 233 – 269. · Zbl 0277.02008 · doi:10.2307/2318447 · doi.org
[5] Martin Davis and Hilary Putnam, Diophantine sets over polynomial rings, Illinois J. Math. 7 (1963), 251 – 256. · Zbl 0113.00604
[6] Martin Davis, Yuri Matijasevič, and Julia Robinson, Hilbert’s tenth problem: Diophantine equations: positive aspects of a negative solution, Mathematical developments arising from Hilbert problems (Proc. Sympos. Pure Math., Vol. XXVIII, Northern Illinois Univ., De Kalb, Ill., 1974) Amer. Math. Soc., Providence, R. I., 1976, pp. 323 – 378. (loose erratum).
[7] J. Denef, Hilbert’s tenth problem for quadratic rings, Proc. Amer. Math. Soc. 48 (1975), 214 – 220. · Zbl 0324.02032
[8] J. Denef, Diophantine sets over \?[\?], Proc. Amer. Math. Soc. 69 (1978), no. 1, 148 – 150. · Zbl 0393.03035
[9] Ju. L. Eršov, The undecidability of certain fields, Dokl. Akad. Nauk SSSR 161 (1965), 27 – 29 (Russian). · Zbl 0203.01204
[10] Ju. L. Eršov, New examples of undecidable theories, Algebra i Logika Sem. 5 (1966), no. 5, 37 – 47 (Russian).
[11] William Fulton, Algebraic curves. An introduction to algebraic geometry, W. A. Benjamin, Inc., New York-Amsterdam, 1969. Notes written with the collaboration of Richard Weiss; Mathematics Lecture Notes Series. · Zbl 0681.14011
[12] Serge Lang, Elliptic functions, Addison-Wesley Publishing Co., Inc., Reading, Mass.-London-Amsterdam, 1973. With an appendix by J. Tate. · Zbl 0316.14001
[13] L. Lipshitz, Undecidable existential problems for addition and divisibility in algebraic number rings, Trans. Amer. Math. Soc. 241 (1978), 121 – 128. , https://doi.org/10.1090/S0002-9947-1978-0536658-9 Leonard Lipshitz, Undecidable existential problems for addition and divisibility in algebraic number rings. II, Proc. Amer. Math. Soc. 64 (1977), no. 1, 122 – 128. · Zbl 0365.02019
[14] A. I. Mal\(^{\prime}\)cev, The undecidability of the elementary theories of certain fields, Sibirsk. Mat. Ž. 1 (1960), 71 – 77 (Russian).
[15] Ju. G. Penzin, Undecidability of fields of rational functions over fields of characteristic 2, Algebra i Logika 12 (1973), 205 – 210, 244 (Russian).
[16] Y. Pourchet, Sur la représentation en somme de carrés des polynômes à une indéterminée sur un corps de nombres algébriques, Acta Arith. 19 (1971), 89 – 104 (French). · Zbl 0244.10019
[17] Julia Robinson, Definability and decision problems in arithmetic, J. Symbolic Logic 14 (1949), 98 – 114. · Zbl 0034.00801 · doi:10.2307/2266510 · doi.org
[18] Julia Robinson, The undecidability of algebraic rings and fields, Proc. Amer. Math. Soc. 10 (1959), 950 – 957. · Zbl 0100.01501
[19] Julia Robinson, On the decision problem for algebraic rings, Studies in mathematical analysis and related topics, Stanford Univ. Press, Stanford, Calif, 1962, pp. 297 – 304.
[20] Julia Robinson, The decision problem for fields, Theory of Models (Proc. 1963 Internat. Sympos. Berkeley), North-Holland, Amsterdam, 1965, pp. 299 – 311. · Zbl 0274.02020
[21] Raphael M. Robinson, Undecidable rings, Trans. Amer. Math. Soc. 70 (1951), 137 – 159. · Zbl 0042.24503
[22] Raphael M. Robinson, The undecidability of pure transcendental extensions of real fields, Z. Math. Logik Grundlagen Math. 10 (1964), 275 – 282. · Zbl 0221.02034
[23] A. Tarski, The elementary undecidability of pure transcendental extensions of real closed fields, Notices Amer. Math. Soc. 10 (1963), A-355.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.