×

zbMATH — the first resource for mathematics

Theory of dynamical systems and general transformation groups with invariant measure. (English. Russian original) Zbl 0399.28011
J. Sov. Math. 7, 974-1065 (1977); translation from Itogi Nauki Tekh., Ser. Mat. Anal. 13, 129-262 (1975).

MSC:
37A15 General groups of measure-preserving transformations and dynamical systems
28Dxx Measure-theoretic ergodic theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] L. M. Abramov, ?Metric automorphisms with quasidiscrete spectra,? Izv. Akad. Nauk SSSR, Ser. Mat.,26, No. 4, 513?530 (1962).
[2] V. M. Alekseev, ?Invariant Markovian subsets of diffeomorphisms,? Usp. Mat. Nauk,23, No. 2, 209?210 (1968).
[3] V. M. Alekseev, ?Quasirandom dynamical systems. I. Quasirandom diffeomorphisms,? Mat. Sb.,76, No. 1, 72?134 (1968). · Zbl 0198.56903
[4] V. M. Alekseev, ?Quasirandom dynamical systems. II. One-dimensional nonlinear oscillations in a periodically perturbed field,? Mat. Sb.,77, No. 1, 545?601 (1968).
[5] V. M. Alekseev, ?Quasirandom dynamical systems. III. Quasirandom oscillations of one-dimensional oscillators,? Mat. Sb.,78, No. 1, 3?50 (1969). · Zbl 0198.57002
[6] V. M. Alekseev, ?Quasirandom dynamical systems. Review by the author of his doctoral dissertation in the physical-mathematical sciences,? Mat. Zametki,6, No. 4, 489?498 (1969).
[7] V. M. Alekseev, ?Perron sets and topological Markov chains,? Usp. Mat. Nauk,24, No. 5, 227?228 (1969).
[8] V. M. Alekseev, ?Quasirandom oscillations and qualitative questions of celestial mechanics,? in: Tenth Mathematical Summer School [in Russian], In-t Mat., Akad. Nauk Urk. SSR, Kiev (1972), pp. 212?341.
[9] D. V. Anosov, ?Geodesic flows on closed Riemannian manifolds of negative curvature,? Tr. Mat. Inst., Akad. Nauk SSSR, 90 (1967). · Zbl 0163.43604
[10] D. V. Anosov, ?On a class of invariant sets of smooth dynamical systems,? in: Transactions of the Fifth International Conference on Nonlinear Oscillations [in Russian], Vol. 2, Kiev (1970), pp. 39?45.
[11] D. V. Anosov, ?On tangent fields of transversal fibrations iny-systems,? Mat. Zametki,2, No. 5, 539?548 (1967).
[12] D. V. Anosov, ?On additive functional homological equations connected with ergodic rotations of the circle,? Izv. Akad. Nauk SSSR, Ser. Mat.,37, No. 6, 1259?1274 (1973).
[13] D. V. Anosov, ?Existence of smooth ergodic flows on smooth manifolds,? Izv. Akad. Nauk SSSR, Ser. Mat.,38, No. 3, 518?545 (1974).
[14] D. V. Anosov and A. B. Katok, ?New examples of ergodic diffeomorphisms of smooth manifolds,? Usp. Mat. Nauk,25, No. 4, 173?174 (1970).
[15] D. V. Anosov and A. B. Katok, ?New examples in smooth ergodic theory. Ergodic diffeomorphisms,? Tr. Mosk. Mat. O-va,23, 3?36 (1970).
[16] D. V. Anosov and Ya. G. Sinai, ?Some smooth ergodic systems,? Usp. Mat. Nauk,22, No. 5(137), 107?172 (1967). · Zbl 0177.42002
[17] L. Auslander, L. Green, and F. Hahn, Flows on Homogeneous Spaces [Russian translation], Mir, Moscow (1966). · Zbl 0144.44701
[18] R. M. Belinskaya, ?Decomposition of a Lebesgue space into trajectories defined by metric automorphisms,? Funktsional’. Analiz Ego Prilozhen.,2, No. 3, 4?16 (1968).
[19] R. M. Belinskaya, ?Generalized powers of automrophism and entropy,? Sib. Mat. Zh.,11, No. 4, 739?749 (1970).
[20] R. M. Belinskaya, ?Entropy of skew products,? Izv. Vyssh. Uchebn. Zaved., Mat., No. 1, 3?14 (1973).
[21] R. M. Belinskaya, ?Entropy of stepwise-powers of skew products,? Izv. Vyssh. Uchebn. Zaved., Mat., No. 3, 12?17 (1974).
[22] P. Billingsley, Ergodic Theory and Information, Wiley (1965). · Zbl 0141.16702
[23] A. A. Blokhin, ?Smooth ergodic flows on surfaces,? Tr. Mosk. Mat. O-va,27, 113?128 (1972).
[24] M. I. Brin, ?Lower bound of entropy of smooth dynamical systems,? Funktsional’. Analiz Ego Prilozhen.,8, No. 3, 71?72 (1974). · Zbl 0349.46034
[25] M. I. Brin, ?Topological transitivity of a class of dynamical systems and frame flows on manifolds of negative curvature,? Funktsional’. Analiz Ego Prilozhen.,9, No. 1, 9?19 (1975).
[26] M. I. Brin, ?Topological group extensions ofy-systems,? Mat. Zametki,18, No. 3, 455?467 (1975).
[27] M. I. Brin and Ya. B. Pesin, ?Partially hyperbolic dynamical systems,? Usp. Mat. Nauk.,28, No. 3, 169?170 (1973).
[28] M. I. Brin and Ya. B. Pesin, ?Frame flows on manifolds of negative curvature,? Usp. Mat. Nauk,28, No. 4, 209?210 (1973).
[29] M. I. Brin and Ya. B. Pesin, ?Partially hyperbolic dynamical systems,? Izv. Akad. Nauk SSSR, Ser. Mat.,38, No. 1, 170?212 (1974).
[30] A. A. Brudno, ?On a property of topological entropy,? Usp. Mat. Nauk,29, No. 1, 160 (1974).
[31] L. A. Bunimovich, ?On a transformation of the circle,? Mat. Zametki,8, No. 2, 205?216 (1970).
[32] L. A. Bunimovich, ?The central limit theorem for dissipative billiards,? Dokl. Akad. Nauk SSSR,204, No. 4, 778?781 (1972). · Zbl 0286.28016
[33] L. A. Bunimovich, ?On ergodic properties of billiards, close to dissipative,? Dokl. Akad. Nauk SSSR,211, No. 5, 1024?1026 (1973).
[34] L. A. Bunimovich, ?Inclusion of Bernoulli shifts in some special flows,? Usp. Mat. Nauk,28, No. 3, 171?172 (1973). · Zbl 0285.28016
[35] L. A. Bunimovich, ?The central limit theorem for a class of billiards,? Teor. Veroyatn. Ee Primen.,19, No. 1, 63?83 (1974). · Zbl 0325.60024
[36] L. A. Bunimovich, ?On a class of special flows,? Izv. Akad. Nauk SSSR, Ser. Mat.,38, No. 1, 213?227 (1974).
[37] L. A. Bunimovich, ?On billiards, close to dissipative,? Mat. Sb.,95, No. 1, 49?73 (1974).
[38] L. A. Bunimovich, ?On ergodic properties of some billiards,? Funktsional’. Analiz. Ego Prilozhen.,8, No. 3, 73?74 (1974). · Zbl 0309.42013
[39] L. A. Bunimovich and Ya. G. Sinai, ?On a basic theorem of the theory of dissipative billiards,? Mat. Sb.,90, No. 3, 415?431 (1973).
[40] B. F. Bylov, R. É. Vinograd, D. M. Grobman, and V. V. Nemytski, The Theory of Lyapunov Exponents and Its Applications to Stability Questions [in Russian], Nauka, Moscow (1966). · Zbl 0144.10702
[41] A. M. Vershik, ?A theorem on lacunary isomorphism of monotone sequences of partitions,? Funktsional’. Analiz Ego Prilozhen.,2, No. 3, 17?21 (1968).
[42] A. M. Vershik, ?Decreasing sequences of measurable partitions and their applications,? Dokl. Akad. Nauk SSSR,193, No. 4, 748?751 (1970). · Zbl 0238.28011
[43] A. M. Vershik, ?Nonmeasurable partitions, trajectory theory, operator algebras,? Dokl. Akad. Nauk SSSR,199, No. 5, 1004?1007 (1971).
[44] A. M. Vershik, ?A continuum of pairwise nonisomorphic dyadic sequences,? Funktsional’. Analiz Ego Prilozhen.,5, No. 3, 16?18 (1971).
[45] A. M. Vershik, ?Arrangement of tame partitions,? Usp. Mat. Nauk,27, No. 3, 195?196 (1972).
[46] A. M. Vershik, ?Four definitions of the scale of an automorphism,?7, No. 3, 1?17 (1973).
[47] A. M. Vershik, ?Countable groups close to finite,? Appendix to: F. Greenleaf, Invariand Means on Topological Groups [Russian translation], Mir, Moscow (1973).
[48] A. M. Vershik and S. A. Yuzvinskii, ?Dynamical systems with invariant measure,? in: Mathematical Analysis. 1967. Summary of Science [in Russian], VINITI AN SSSR, Moscow (1969). · Zbl 0252.28006
[49] G. Vinokurov, ?Two nonisomorphic strict endomorphisms of a Lebesgue space with isomorphic sequences of partitions,? in: Stochastic Processes and Related Questions [in Russian], Fan, Tashkent (1970), pp. 43?45.
[50] V. G. Vinokurov and S. A. Rubshtein, ?Extensions of decreasing sequences of partitions of a Lebesgue space,? in:Stochastic Processes and Statistical Inference [in Russian], Vol. 2, Fan, Tashkent (1972), pp. 49?61.
[51] V. G. Vinokurov, S. A. Rubshtein, and V. K. Tsipuridu, ?Roots of measurable partitions and roots of ergodic endomorphisms,? in: Stochastic Processes and Statistical Inference [in Russian], Vol. 2, Fan, Tashkent (1972), pp. 62?66.
[52] V. G. Vinokurov and V. K. Tsipuridu, ?On a class of semigroups of endomorphisms,? Dokl. Akad. Nauk Uzb. SSR, No. 11, 5?6 (1972).
[53] K. L. Volkovysskii and Ya. G. Sinai, ?Ergodic properties of an ideal gas with an infinite number of degrees of freedom,? Funktsional’. Analiz Ego Prilozhen.,5, No. 3, 19?21 (1971). · Zbl 0243.30002
[54] N. N. Ganikhodzhaev, ?On group endomorphisms of the two-dimensional torus,? Dokl. Akad. Nauk Uzb. SSR, No. 11, 3?4 (1972).
[55] I. M. Gel’fand, M. I. Graev, and N. Ya. Vilenkin, Integral Geometry and Its Connections with Questions of the Theory of Representations. Generalized Functions [in Russian], Vol. 5, Fizmatgiz, Moscow (1962).
[56] I. M. Gel’fand and S. V. Fomin, ?Geodesic flows on manifolds of constant negative curvature,? Usp. Mat. Nauk,47, No. 1, 118?137 (1952).
[57] V. Ya. Golodets, ?On quasiinvariant ergodic measures,? Mat. Sb.,72, No. 4, 558?572 (1967).
[58] V. Ya. Golodets, ?On approximative finite groups of transformations of spaces with measures,? Usp. Mat. Nauk,24, No. 4, 195?196 (1969).
[59] V. Ya. Golodets, ?On transformations, preserving a quasiinvariant measure,? Mat. Zametki,7, No. 2, 223?227 (1970).
[60] M. I. Gordin, ?On stochastic processes generated by number-theoretic endomorphisms,? Dokl. Akad. Nauk SSSR,182, No. 5, 1004?1006 (1968). · Zbl 0174.49103
[61] B. M. Gurevich, ?Some conditions for the existence of K-partitions for special flows,? Tr. Mosk. Mat. O-va,17, 89?116 (1967).
[62] B. M. Gurevich, ?On a condition for the existence of K-partitions for special flows,? Usp. Mat. Nauk,24, No. 5, 233?234 (1969).
[63] B. M. Gurevich, ?Topological entropy of countable Markov chains,? Dokl. Akad. Nauk SSSR,187, No. 4, 715?718 (1969). · Zbl 0194.49602
[64] B. M. Gurevich, ?Entropy of shifts and Markovian measures in the space of paths of a countable graph,? Dokl. Akad. Nauk SSSR,192, No. 5, 963?965 (1970).
[65] B. M. Gurevich, ?On invariant measures with maximal entropy fory-diffeomorphisms,? Funktsional’. Analiz Ego Prilozhen.,4, No. 4, 21?30 (1970).
[66] B. M. Gurevich, ?On one-sided and two-sided regularity of stationary stochastic processes,? Dokl. Akad. Nauk SSSR,210, No. 4, 763?766 (1973). · Zbl 0323.60043
[67] B. M. Gurevich and V. I. Oseledets, ?The Gibbs distribution and dissipativeness ofy-diffeomorphisms,? Dokl. Akad. Nauk SSSR,209, No. 5, 1021?1023 (1973).
[68] B. M. Gurevich and Ya. G. Sinai, ?Automorphisms of the torus and Markov chains,? Appendix to: P. Billingsley, Ergodic Theory and Information Theory, Wiley (1965).
[69] B. M. Gurevich, Ya. G. Sinai, and Yu. M. Sukhov, ?On invariant measures of dynamical systems of one-dimensional statistical mechanics,? Usp. Mat. Nauk,28, No. 5, 45?82 (1973). · Zbl 0321.28011
[70] B. M. Gurevich and Yu. M. Sukhov, ?Stationary solutions of Bogolyubov chains of equations in classical statistical mechanics,? Dokl. Akad. Nauk SSSR,233, No. 2, 276?279 (1975). · Zbl 0361.60090
[71] E. I. Dinaburg, ?An example of the calculation of topological entropy,? Usp. Mat. Nauk,23, No. 4, 249?250 (1968).
[72] E. I. Dinaburg, ?The relation between topological entropy and metric entropy,? Dokl. Akad. Nauk SSSR,190, No. 1, 19?22 (1970). · Zbl 0196.26401
[73] E. I. Dinaburg, ?A connection between various entropy characteristics of dynamical system,? Izv. Akad. Nauk SSSR, Ser. Mat.,35, No. 2, 324?366 (1971).
[74] V. T. Dubrovin, ?Multidimensional central limit theorem for number-theoretic endomorphisms,? in: Probabilistic Methods and Cybernetics [in Russian], Vols. 10?11, Kazan Univ., Kazan (1974), pp. 17?29.
[75] A. Yu. Zhirov and Yu. I. Ustinov, ?Topological entropy of a one-dimensional Williams solenoid,? Mat. Zametki,14, No. 6, 859?866 (1973).
[76] G. M. Zaslavskii, Statistical Irreversibility in Nonlinear Systems [in Russian], Nauka, Moscow (1970).
[77] A. N. Zemlyakov, ?Construction of dynamics in one-dimensional systems of statistical physics in the case of nonfinitary potentials,? Usp. Mat. Nauk,28, No. 1, 239?240 (1973).
[78] A. N. Semlyakov and A. B. Katok, ?Topological transitivity of billiards in polygons,? Mat. Zametki,18, No. 2, 291?301 (1975).
[79] I. A. Ibragimov, ?On spectra of special Gaussian sequences, satisfying the condition of strongly mixing. II. Sufficient conditions. Speed of mixing,? Teor. Veroyatn. Ee Primen.,15, No. 1, 24?37 (1970).
[80] I. A. Ibragimov and Yu. V. Linnik, Independently and Stationarily Connected Quantities [in Russian], Nauka, Moscow (1965). · Zbl 0154.42201
[81] R. S. Ismagilov, ?On irreducible cycles, connected with dynamical systems,? Funktsional’. Analiz Ego Prilozhen.,3, No. 3, 92?93 (1969).
[82] A. B. Katok, ?Entropy and approximation of dynamical systems by periodic transformations,? Funktsional’. Analiz Ego Prilozhen.,1, No. 1, 75?85 (1967). · Zbl 0168.12302
[83] A. B. Katok, ?Spectral properties of dynamical systems with integral invariants on the torus,? Funktsional’. Analiz Ego Prilozhen,1, No. 4, 46?56 (1967).
[84] A. B. Katok, ?Rotation number andy-flows,? Usp. Mat. Nauk,25, No. 5, 243?244 (1970).
[85] A. B. Katok, ?Ergodic flows generated by systems of weakly interacting oscillators,? in: Transactions of the Fifth International Conference on Nonlinear Oscillations, 1969 [in Russian], Vol. 2, Kiev (1970), pp. 216?221.
[86] A. B. Katok, ?Dynamical systems with hyperbolic structures,? in: Tenth Summer Mathematics School [in Russian], In-t Mat. Ukr. SSR, Kiev (1972), pp. 125?211.
[87] A. B. Katok, ?Minimal diffeomorphisms on principle S1-bundles,? in: Theses of the Sixth All-Union Topological Conference in Tbilisi [in Russian], Metsniereba, Tbilisi (1972).
[88] A. B. Katok, ?Invariant measures on flows on orientable surfaces,? Dokl. Akad. Nauk SSSR,211, No. 4, 775?778 (1973). · Zbl 0298.28013
[89] A. B. Katok, ?Ergodic perturbations of degenerate integrable Hamiltonian systems,? Izv. Akad. Nauk SSSR, Ser. Mat.,37, No. 3, 539?576 (1973).
[90] A. B. Katok, ?Local properties of hyperbolic sets,? Appendix to: Z. Nitecki, Introduction to Differential Dynamics [Russian translation], Mir, Moscow (1975), pp. 214?232.
[91] A. B. Katok, ?Change of time, monotone equivalence and standard dynamical systems,? Dokl. Akad. Nauk SSSR,223, No. 4, 789?792 (1975). · Zbl 0326.28025
[92] A. B. Katok and A. M. Stepin, ?On approximations of ergodic dynamical systems by periodic transformations,? Dokl. Akad. Nauk SSSR,171, No. 6, 1268?1271 (1966).
[93] A. B. Katok and A. M. Stepin, ?Approximations in ergodic theory,? Usp. Mat. Nauk,22, No. 5, 81?106 (1967). · Zbl 0172.07202
[94] A. B. Katok and A. M. Stepin, ?Metric properties of homeomorphisms preserving measures,? Usp. Mat. Nauk,25, No. 2, 193?220 (1970). · Zbl 0209.27803
[95] A. B. Katok and Ch. Foiash, ?On multiplicative operator functions on metric automorphisms,? Usp. Mat. Nauk,23, No. 3, 170?180 (1968).
[96] A. A. Kirillov, ?Dynamical systems, factors and group representations,? Usp. Mat. Nauk,22, No. 5, 67?80 (1967).
[97] A. A. Kirillov, Elements of the Theory of Representations [in Russian], Nauka, Moscow (1972).
[98] Yu. I. Kifer and S. A. Pirogov, ?On decompositions of quasiinvariant measures into ergodic components,? Usp. Mat. Nauk,27, No. 5, 239?240 (1972).
[99] A. N. Kolmogorov, ?On dynamical systems with integral invariants on the torus,? Dokl. Akad. Nauk SSSR,93, No. 5, 763?766 (1953).
[100] A. N. Kolmogorov, ?A new metric invariant of transitive automorphisms of Lebesgue spaces,? Dokl. Akad. Nauk SSSR,119, No. 5, 861?864 (1958). · Zbl 0083.10602
[101] I. P. Kornfel’d, ?On invariant measures of minimal dynamical systems,? Dokl. Akad. Nauk SSSR,202, No. 2, 280?283 (1972).
[102] A. A. Kosyakin and E. A. Sandler, ?Ergodic properties of a class of piecewise-smooth transformations of a segment,? Izv. Vyssh. Uchebn. Zaved., Mat., No. 3, 32?40 (1972).
[103] A. V. Kochergin, ?On the absence of mixing for special flows over rotations of circles and flows on a two-dimensional torus,? Dokl. Akad. Nauk SSSR,205, No. 3, 515?518 (1972).
[104] A. V. Kochergin, ?Change of time in flows and mixing,? Izv. Akad. Nauk SSSR, Ser. Mat.,37, No. 6, 1275?1298 (1973).
[105] A. V. Kochergin, ?On mixing in special flows over exchanges of segments and in smooth flows on surfaces,? Mat. Sb.,96, No. 3, 472?502 (1975).
[106] A. B. Kramli, ?Geodesic flows on compact Riemannian surfaces without focal points,? Usp. Mat. Nauk,27, No. 5, 245?246 (1972).
[107] A. B. Kramli, ?Flows of bihedra on three-dimensional manifolds of negative curvature,? Usp. Mat. Nauk,28, No. 4, 219?220 (1973).
[108] A. B. Kramli, ?Geodesic flows on compact Riemannian surfaces without focal points,? Stud. Sci. Math. Hungr.,8, No. 1?2, 59?78 (1973).
[109] A. B. Krygin, ?Extensions of diffeomorphisms preserving volume,? Funktsional’, Analiz Ego Prilozhen.,5, No. 2, 72?76 (1971). · Zbl 0234.46029
[110] A. B. Krygin, ?An example of a continuous flow on a torus with mixed spectrum,? Mat. Zametki,15, No. 2, 235?240 (1974). · Zbl 0295.58011
[111] Iosikhiro Kubokava, ?Spectral characterization of the mixing properties of a flow (T),? Proc. Inst. Statist. Math.,17, No. 1, 1?4 (1969).
[112] A. G. Kushnirenko, ?On metric invariants of the type of entropy,? Usp. Mat. Nauk,11, No. 5, 57?66 (1967). · Zbl 0169.46101
[113] A. G. Kushnirenko, ?Spectral properties of some dynamical systems with dispersive power,? Vestn. Mosk. Univ., Mat., Mekh., No. 1, 101?108 (1974).
[114] A. M. Livshitz, ?Some properties of the homology ofy-systems,? Mat. Zametki,10, No. 5, 555?564 (1971).
[115] A. N. Livshits, ?Cohomology of dynamical systems,? Izv. Akad. Nauk SSSR, Ser. Mat.,36, No. 6, 1296?1320 (1972).
[116] A. N. Livshits, ?Generators of automorphisms with finite entropy,? Vestn. Leningr. Univ., No. 1, 32?36 (1973). · Zbl 0251.28005
[117] A. N. Livshits and Ya. G. Sinai, ?On invariant measures compatible with smoothness of transitivey-systems,? Dokl. Akad. Nauk SSSR, No. 5, 1039?1041 (1972).
[118] E. G. Litinskii, ?On the construction of invariant measures connected with noncommutative stochastic products,? Mat. Sb.,91, No. 1, 88?108 (1973).
[119] S. A. Malkin, ?An example of two metrically nonisomorphic ergodic automorphisms with identical simple spectra,? Izv. Vyssh. Uchebn. Zaved., Mat., No. 6, 69?74 (1968).
[120] G. A. Margulis, ?On some applications of ergodic theory to the study of manifolds of negative curvature,? Funktsional’. Analiz Ego Prilozhen.,3, No. 4, 89?90 (1969).
[121] G. A. Margulis, ?On some measures connected withy-flows on compact manifolds,? Funktsional’. Analiz Ego Prilozhen.,4, No. 1, 62?76 (1970).
[122] G. A. Margulis, ?Metric questions from the theory ofy-systems,? in: Tenth Summer School [in Russian], Inst. Mat., Akad. Nauk Ukr. SSR, Kiev (1972), pp. 342?348.
[123] M. M. Mel’tser, B. A. Rubshtein, and P. S. Shvarts, ?Calculation of the topological entropy of some diffeomorphisms,? Nauch. Tr. Tashkent Univ., No. 394 (1970), pp. 102?107.
[124] V. M. Millionshchikov, ?Criteria for the stability of the probabilistic spectrum of systems of differential equations with recurrent coefficients and criteria for almost reducibility of systems with almost periodic coefficients,? Mat. Sb.,78, No. 2, 79?201 (1969).
[125] R. A. Minlos, ?Gibbs limit distribution,? Funktsional’. Analiz Ego Prilozhen.,1, No. 2, 60?73 (1967).
[126] R. A. Minlos, ?Regularity of Gibbs limit distribution,? Funktsional’. Analiz Ego Prilozhen.,1, No. 3, 40?54 (1967).
[127] A. S. Mishchenko, ?Integrals of geodesic flows on groups,? Funktsional’. Analiz Ego Prilozhen.,4, No. 3, 73?77 (1970).
[128] D. A. Moskvin, ?On trajectories of ergodic endomorphisms of the two-dimensional torus, starting on a smooth curve,? in: Actual Problems of Analytic Number Theory [in Russian] Nauka i Tekhn.,? Minsk (1974), pp. 138?167.
[129] Nguen Chin’, ?Homotopy properties of automorphism groups of Lebesgue spaces,? Vestn. Leningr. Univ., No. 19, 145?146 (1970).
[130] V. I. Oseledets, ?On spectra of ergodic automorphisms,? Dokl. Akad. Nauk SSSR,168, No. 5, 1009?1011 (1966).
[131] V. I. Oseledets, ?Multiplicative ergodic theorem. Characteristic exponents of Lyapunov of dynamical systems,? Tr. Mosk. O-va,19, 179?210 (1968).
[132] V. I. Oseledets, ?Automorphisms with simple and continuous spectrum without group properties,? Mat. Zametki,5, No. 3, 323?326 (1969).
[133] V. I. Oseledets, ?Two nonisomorphic dynamical systems with identical simple continuous spectra,? Funktsional’. Analiz Ego Prilozhen.,5, No. 3, 75?79 (1971).
[134] V. T. Perekrest, ?On exponential mixing iny-systems,? Usp. Mat. Nauk,29, No. 1, 181?182 (1974).
[135] Ya. B. Pesin, ?An example of a nonergodic flow with nonzero characterisitc exponents,? Funktsional’. Analiz Ego Prilozhen.,8, No. 3, 81?82 (1974).
[136] B. S. Pitskel’, ?Some properties of A-entropy,? Mat. Zametki,5, No. 3, 327?334 (1969).
[137] B. S. Pitskel’, ?A metric compatible with the topology, invariant with respect to a given homeomorphism of the space of sequences and a property of topological invariants of entropy type,? Usp. Mat. Nauk,24, No. 5, 222 (1969).
[138] B. S. Pitskel’, ?Some remarks on the individual ergodic theorem of information theory,? Mat. Zametki,9, 93?103 (1971).
[139] B. S. Pitskel’, ?On informationally coming amenable groups,? Dokl. Akad. Nauk SSSR,223, No. 5, 1067?1070 (1975).
[140] B. S. Pitskel’ and A. M. Stepin, ?On the property of uniform distribution of entropy of commutative groups with metric automorphisms,? Dokl. Akad. Nauk SSSR,198, No. 5, 1021?1024 (1971).
[141] M. E. Ratner, ?On invariant measures fory-flows on three-dimensional manifolds,? Dokl. Akad. Nauk SSSR,186, No. 2 (1969).
[142] M. E. Ratner, ?The central limit theorem fory-flows on three-dimensional manifolds,? Dokl. Akad. Nauk SSSR,186, No. 3, 519?521 (1969). · Zbl 0292.60052
[143] M. E. Ratner, ?Markovian partitions fory-flows on three-dimensional manifolds,? Mat. Zametki,6, No. 6, 693?704 (1969).
[144] V. A. Rokhlin, ?New progress in the theory of transformations with invariant measure,? Usp. Mat. Nauk,15, No. 4, 3?26 (1960).
[145] V. A. Rokhlin, ?Lectures on the entropy theory of transformations with invariant measure,? Usp. Mat. Nauk,12, No. 5, 3?56 (1967).
[146] B. A. Rubshtein, ?On decreasing sequences of measurable partitions,? Dokl. Akad. Nauk SSSR,205, No. 3, 526?529 (1972).
[147] B. A. Rubshtein, ?On a class of sequences of measurable partitions and endomorphisms of Lebesgue spaces,? Izv. Vyssh. Uchebn. Zaved., Mat., No. 4, 99?105 (1973).
[148] B. A. Rubshtein, ?On sequences of measurable partitions generated by endomorphisms of Lebesgue spaces,? Usp. Mat. Nauk,28, No. 1, 247?248 (1973).
[149] B. A. Rubshtein, ?On generating partitions for Markovian endomorphisms,? Funktsional’. Analiz Ego Prilozhen.,8, No. 1, 90?91 (1974).
[150] D. Ruelle, Statistical Mechanics. Rigorous Results, W. A. Benjamin, Reading, Mass. (1974).
[151] E. A. Sataev, ?On the number of invariant measures for flows on orientable surfaces,? Izv. Akad. Nauk SSSR,39, No. 4, 860?878 (1975).
[152] E. A. Sidorov, ?The existence of topologically indecomposable transformations of n-dimensional domains which are not ergodic,? Mat. Zametki,3, No. 4, 427?430 (1968).
[153] E. A. Sidorov, ?Smooth topologically transitive dynamic systems,? Mat. Zametki,4, No. 6, 151?759 (1968).
[154] E. A. Sidorov, ?A connection between topological transitivity and ergodicity,? Izv. Vyssh. Uchebn. Zaved., Mat., No. 4, 77?82 (1969).
[155] E. A. Sidorov, ?Topologically transitive cylindrical cascades,? Mat. Zametki,14, No. 3, 441?452 (1973).
[156] E. A. Sidorov, ?On a class of minimal sets,? Usp. Mat. Nauk,28, No. 5, 225?226 (1973).
[157] Ya. G. Sinai, ?On weak isomorphism of transformations with invariant measures,? Mat. Sb.,63, No. 1, 23?42 (1964).
[158] Ya. G. Sinai, ?Classical dynamical systems with countably multiple Lebesgue spectrum. II,? Izv. Akad. Nauk SSSR, Ser. Mat.,30, No. 1, 15?68 (1960).
[159] Ya. G. Sinai, ?Markovian partitions andy-diffeomorphisms,? Funktsional’. Analiz Ego Prilozhen.,2, No. 1, 64?89 (1968).
[160] Ya. G. Sinai, ?The construction of Markovian partitions,? Funktsional’. Analiz Ego Prilozhen.,2, No. 3, 70?80 (1968).
[161] Ya. G. Sinai, ?Dynamical systems with elastic reflection. Ergodic properties of dissipative billiards,? Usp. Mat. Nauk,25, No. 2, 141?192 (1970). · Zbl 0252.58005
[162] Ya. G. Sinai, ?Ergodic properties of a gas in one-dimensional hard globules with an infinite number of degrees of freedom,? Funktsional’. Analiz Ego Prilozhen.,6, No. 1, 41?50 (1972).
[163] Ya. G. Sinai, ?The construction of dynamics in one-dimensional systems of statistical mechanics,? Teor. Mat. Fiz.,11, No. 2, 248?258 (1972).
[164] Ya. G. Sinai, ?Gibbsian measures in ergodic theory,? Usp. Mat. Nauk,27, No. 4, 21?64 (1972).
[165] Ya. G. Sinai, ?The construction of cluster dynamics for dynamical systems of statistical mechanics,? in: Materials of the All-Union School in Dilizhan [in Russian], Erevan (1974), pp. 160?172.
[166] Ya. G. Sinai, ?The construction of cluster dynamics for dynamical systems of statistical mechanics,? Vestn. MGU, Ser. Mat., No. 1, 152?158 (1974).
[167] Ya. G. Sinai, Introduction to Ergodic Theory [in Russian], Erevan, Univ., Erevan (1973). · Zbl 0255.28016
[168] Ya. G. Sinai, ?The asymptotic number of closed geodesics on compact manifolds of negative curvature,? Izv. Akad. Nauk SSSR, Ser. Mat.,30, No. 6, 1275?1296 (1966). · Zbl 0146.18103
[169] Ya. G. Sinai and Yu. M. Sukhov, ?On an existence theorem for solutions of Bogolyubov chains of equations,? Teor. Mat. Fiz.,19, No. 3, 344?363 (1974). · Zbl 0318.70011
[170] S. Smale, ?Structural stability of a differentiable homeomorphism with an infinite number of periodic points,? in: Transactions of the International Symposium on Nonlinear Oscillations, 1961 [in Russian], Iz-vo Akad. Nauk SSSR, Kiev (1963), pp. 365?366.
[171] A. M. Stepin, ?Flows on solvable manifolds,? Usp. Mat. Nauk,24, No. 5, 241?242 (1969).
[172] A. M. Stepin, ?On the cohomology of a gorup of automorphisms of a Lebesgue space,? Funktsional’. Analiz Ego Prilozhen., No. 2, 91?92 (1971).
[173] A. M. Stepin, ?On an entropy invariant of decreasing sequences of measurable partitions,? Funktsional.’ Analiz Ego Prilozhen.,5, No. 3, 80?84 (1971).
[174] A. M. Stepin, ?Spectra of dynamical systems,? in: International Congress of Mathematicians in Nice, 1970 [Russian translation], Nauka, Moscow (1972), pp. 307?312.
[175] A. M. Stepin, ?On a connection between approximative and spectral properties of metric automorphisms,? Mat. Zametki,13, No. 3, 403?409 (1973). · Zbl 0266.28006
[176] A. M. Stepin, ?Dynamical systems on homogeneous spaces of semisimple Lie groups,? Izv. Akad. Nauk SSSR, Ser. Mat.,37, No. 5, 1091?1107 (1973).
[177] A. M. Stepin, ?Bernoulli shift on groups,? Dokl. Akad. Nauk SSSR,223, No. 2, 300?302 (1975). · Zbl 0326.28026
[178] A. A. Tempel’man, ?Ergodic theorems for general dynamical systems,? Dokl. Akad. Nauk SSSR,176, No. 4, 790?793 (1967).
[179] A. A. Tempel’man, ?Ergodic theorems for general dynamical systems,? Tr. Mosk. Mat. O-va,26, 95?132 (1972).
[180] A. A. Tempel’man, ?On the ergodicity of Gaussian homogeneous stochastic fields on homogeneous spaces,? Teor. Veroyatn. Ee Primen.,18, No. 1, 177?180 (1973).
[181] V. G. Sharapov, ?On discrete partitions and strict endomorphisms of Lebesgue spaces,? Izv. Akad. Nauk Uzb. SSR, Ser. Fiz.-Mat. Nauk, No. 5, 30?37 (1971).
[182] V. G. Sharapov, ?On Markovian endomorphisms of Lebesgue spaces,? Funktsional’. Analiz Ego Prilozhen.,5, No. 3, 91?95 (1971).
[183] A. I. Shnirel’man, ?Statistical properties of eigenfunctions,? in: Materials of the All-Union Mathematical School in Dilizhan [in Russian], Erevan (1974), pp. 267?278.
[184] Yu. Shreider, ?Banach functionals and ergodic theorems,? Mat. Zametki,2, No. 4, 385?394 (1967).
[185] M. S. Shtil’man, ?On the number of invariant measures with maximal entropy for shifts in sequence spaces,? Mat. Zametki,9, No. 3, 291?302 (1971).
[186] S. A. Yuzvinskii, ?Nonergodicity of automorphisms of connected locally compact groups,? Uch. Zap. Leningr. Gos. Pedagog. Inst. Im. Gertsena,387, 257?262 (1968).
[187] S. A. Yuzvinskii, ?Metric properties of automorphisms on homogeneous spaces of compact groups,? Izv. Akad. Nauk SSSR, Ser. Mat.,35, No. 1, 78?82 (1971).
[188] S. A. Yuzvinskii, ?On the entropy of sequences of partitions generated by endormorphisms,? Funktsional’. Analiz Ego Prilozhen.,6, No. 3, 87?88 (1972).
[189] S. A. Yuzvinskii, ?Discrimination of K-automorphisms by scale,? Funktsional’. Analiz. Ego Prilozhen.,7, No. 4, 70?75 (1973). · Zbl 0284.53047
[190] M. I. Yadrenko, ?ERgodic theorems for isotropic stochastic fields,? Teor. Veroyatn. Mat. Statist. Mezhved. Nauch. Sb., No. 1, 249?251 (1970). · Zbl 0222.60021
[191] R. Abraham and J. E. Marsden, Foundations of Mechanics, Benjamin, New York-Amsterdam (1967).
[192] J. Aczel and A. M. Ostrowski, ?On the characterization of Shannon’s entropy by Shannon’s inequality,? J. Austral. Math. Soc.,16, No. 3, 368?374 (1973). · Zbl 0277.94010
[193] R. L. Adler, ?F-expansions revisited,? Lecture Notes Math.,318, 1?5 (1973).
[194] R. L. Adler, A. Konheim, and McAndrew, ?Topological entropy,? Trans. Am. Math. Soc.,114, No. 2, 309?319 (1965). · Zbl 0127.13102
[195] R. L. Adler and P. C. Shields, ?Skew products of Bernoulli shifts with rotations,? Isr. J. Math.,12, No. 3, 215?222 (1972). · Zbl 0246.28009
[196] R. L. Adler, P. C. Shields, and M. Smorodinsky, ?Irreducible Markov shifts,? Ann. Math. Stat.,43, No. 3, 1027?1029 (1972). · Zbl 0244.60053
[197] R. L. Adler and B. Weiss, ?Entropy a complete metric invariant for automorphisms of the torus,? Proc. Nat. Acad. Sci. USA,57, No. 6, 1573?1576 (1967). · Zbl 0177.08002
[198] R. L. Adler and B. Weiss, ?The ergodic infinite measure preserving transformation of Boole,? Isr. J. Math.,16, No. 3, 263?278 (1973)(1974). · Zbl 0298.28012
[199] M. Aiserman, S. Goldstein, and J. L. Leibowitz, ?Ergodic properties of an infinite one-dimensional hard rod system,? Comm. Math. Phys.,39, No. 4, 289?302 (1975). · Zbl 0352.60073
[200] M. A. Akcoglu and J. R. Baxter, ?Roots of ergodic transformations,? J. Math. and Mech.,19, No. 11, 991?1003 (1970). · Zbl 0197.33501
[201] M. A. Akcoglu and R. V. Chacon, ?A local ratio theorem,? Can. J. Math.,22, No. 3, 545?552 (1970). · Zbl 0201.06603
[202] M. A. Akcoglu and J. R. Baxter, ?Approximation of commuting transformations,? Proc. Am. Math. Soc.,32, No. 1, 111?119 (1972). · Zbl 0229.28010
[203] M. A. Akcoglu, J. R. Baxter, and T. Schwartzbauer, ?Commuting transformations and mixing,? Proc. Am. Math. Soc.,24, No. 3, 637?642 (1970). · Zbl 0197.04001
[204] M. Akcoglu and J. Cunsolo, ?An ergodic theorem for semigroups,? Proc. Am. Math. Soc.,24, No. 1, 161?170 (1970). · Zbl 0187.06803
[205] M. A. Akcoglu and J. Cunsolo, ?An identification of ratio ergodic limits for semigroups,? Z. Wahrscheinlichkeitstheorie und Verw. Geb.,15, No. 3, 219?229 (1970). · Zbl 0196.14702
[206] M. A. Akcoglu, J. P. Huneke, and H. A. Rost, ?A counterexample to the Blum-Hanson theorem in general spaces,? Pacific J. Math.,50, No. 2, 305?308 (1974). · Zbl 0252.47006
[207] M. A. Akcoglu and R. W. Sharpe, ?Ergodic theory and boundaries,? Trans. Am. Math. Soc.,132, No. 2, 447?460 (1968). · Zbl 0162.19402
[208] M. A. Akcoglu and L. Sucheston, ?On the dominated ergodic theorem in L2-space,? Proc. Am. Math. Soc.,43, No. 2, (1974).
[209] N. Aoki, ?On generalized commuting properties of metric automorphisms. I,? Proc. Japan Acad.,44, No. 6, 467?471 (1968). · Zbl 0164.06201
[210] N. Aoki, ?On generalized commuting properties of metric automorphisms. II,? Proc. Japan Acad.,45, No. 1, 17?19 (1969). · Zbl 0179.35604
[211] N. Aoki, ?On zero entropy and quasi-discrete spectrum for automorphisms,? Proc. Japan Acad.,45, No. 1, 20?24 (1969). · Zbl 0179.35701
[212] N. Aoki, ?On two invariant ?-algebras for an affine transformation,? Mich. Math. J.,17, No. 4, 397?400 (1970). · Zbl 0204.37702
[213] N. Aoki, ?On generalized commuting order of automorphisms with quasi-discrete spectrum,? Trans. Am. Math. Soc.,152, No. 1, 79?97 (1970). · Zbl 0204.37701
[214] N. Aoki, ?Topological entropy of distal affine transformations on compact Abelian groups,? J. Math. Soc. Jap.,23, No. 1, 11?17 (1971). · Zbl 0206.31603
[215] N. Aoki and Yu. Ito, ?Ergodic properties of affine transformations,? J. Math. Anal. and Appl.,38, No. 2, 447?453 (1972). · Zbl 0235.22016
[216] H. Araki and E. Woods, ?A classification of factors,? Publ. RIMS Kyoto Univ., Ser. A,4, 51?130 (1968). · Zbl 0206.12901
[217] F. Aribund, ?Un théorème ergodique pour les espaces L1,? J. Funct. Anal.,5, No. 3, 395?411 (1970). · Zbl 0196.07603
[218] F. Aribund, ?Sur le théorème de Akcoglu-Birkhoff,? Semin. Choquet. Fac. Sci. Paris,10, No. 1, 15/01?15/19 (1970?71).
[219] L. K. Arnold, On ?-finite Invariant Measures, Doctoral Dissertation Brown University, 1966. Dissert. Abstrs.B28, No. 1 (1967).
[220] L. K. Arnold, ?On ?-finite invariant measures,? Z. Wahrscheinlichkeitstheorie und Verw. Geb.,9, No. 2, 85?97 (1968). · Zbl 0196.18402
[221] V. I. Arnold and A. Avez, Ergodic Problems of Classical Mechanics, Benjamin, New York (1968). · Zbl 0167.22901
[222] W. B. Arveson and K. B. Josephson, ?Operator algebras and measure preserving automorphisms. II,? J. Funct. Anal.,4, No. 1, 100?134 (1969).
[223] R. J. Aumann, ?Random measure preserving transformations,? in: Proc. Fifth Berkeley Sympos. Math. Statist. and Probabil., 1965?1966, Vol. 2, Part 2, Berkeley-Los Angeles (1967), pp. 321?326.
[224] L. Auslander, ?Modifications of solvmanifolds and G-induced flow,? Am. J. Math.,88, No. 3, 615?625 (1966). · Zbl 0149.19902
[225] L. Auslander, ?Ergodic automorphisms,? Am. Math. Mon.,77, No. 1, 1?19 (1970). · Zbl 0192.40602
[226] L. Auslander, ?An exposition of the structure of solvmanifolds. Part I. Algebraic theory,? Bull. Am. Math. Soc.,79, No. 2, 227?261 (1973). · Zbl 0265.22016
[227] L. Auslander, ?An exposition of the structure of solvmanifolds. Part II. G-induced flows,? Bull. Am. Math. Soc.,79, No. 2, 262?285 (1973). · Zbl 0265.22017
[228] L. Auslander, ?Ergodic G-induced flows on compact solvmanifolds,? Lect. Notes Math.,318, 12?22 (1973). · Zbl 0265.22015
[229] D. G. Austin, ?A note on the Birkhoff ergodic theorem,? Ann. Math. Statist.,38, No. 3, 922?923 (1967). · Zbl 0158.35403
[230] A. Avez, ?Propriétés ergodiques des endomorphismes dilatants des variétés compactes,? C. R. Acad. Sci.,266, No. 12, A610-A612 (1968). · Zbl 0186.56704
[231] A. Avez, ?Propriétés ergodiques des groupes d’isometries,? C. R. Acad. Sci.,265, No. 21, A679-A682 (1967). · Zbl 0165.16202
[232] A. Avez, ?Spectre discrete des systèmes ergodiques,? C.R. Acad. Sci.,264, No. 1, A49-A52 (1967). · Zbl 0184.36202
[233] A. Avez, ?Caractérisation spectrale des endomorphismes dilatants des variétés,? Bull. cl. Sci. Acad. Roy. Belg.,54, No. 11, 1424?1433 (1968).
[234] A. Avez, ?Une généralization du théorème d’equipartition de Weyl,? Bull cl. Sci. Acad. Roy. Belg.,53, No. 9, 1000?1006 (1967).
[235] A. Avez, ?Topologie des difféomorphismes d’Anosov qui possedant un invariant integral,? C. R. Acad. Sci.,265, No. 17, A508-A510 (1967). · Zbl 0186.56703
[236] A. Avez, ?Limite de quotient pour des marches aléatoires des groupes,? C.R. Acad. Sci.,276, No. 4, A317-A320 (1973). · Zbl 0273.60006
[237] R. Azencott, ?Difféomorphismes d’Anosov et schémas de Bernoulli,? C.R. Acad. Sci.,270, No. 17, A1105-A1107 (1970). · Zbl 0214.15902
[238] Y. Baba, ?Entropy and Hausdorff dimension of a sequence of coordinate functions in base r expansion,? Lect. Notes in Math.,330, 1?6 (1973). · Zbl 0264.94019
[239] J. R. Baxter, ?A class of ergodic transformations having simple spectrum,? Proc. Am. Math. Soc.,27, No. 2, 275?279 (1971). · Zbl 0206.06404
[240] J.-M. Belley, ?Spectral measures and flows,? Indiana Univ. Math. J.,22, No. 3, 293?300 (1972). · Zbl 0246.28015
[241] J.-M. Belley, ?Spectral properties for invertible measure preserving transformations,? Can. J. Math.,25, No. 4, 806?811 (1973). · Zbl 0268.28009
[242] P. Benvenuti, ?Sul problema ergodico ad una singola funzione,? Atti Accad Naz. Lincei Rend. C1. Sci. Fiz., Mat. e Natur.,42, No. 3, 368?372 (1967). · Zbl 0168.15701
[243] K. R. Berg, On the Conjugary Problem for K-systems, Doctoral Diss. Univ. Minn., 1967, Dissert. Abstrs.,B28, No. 8, 3368 (1968).
[244] K. R. Berg, ?Convolution of invariant measures, maximal entropy,? Math. Syst. Theory,3, No. 2, 146?150 (1969). · Zbl 0179.08301
[245] K. R. Berg, ?Quasi-disjointness in ergodic theory,? Trans. Am. Math. Soc.,162, 7187 (1971). · Zbl 0225.28011
[246] K. R. Berg, ?Quasi-disjointness, products and inverse limits,? Math. Syst. Theory,6, No. 2, 123?128 (1972). · Zbl 0235.28011
[247] R. N. Berk, A General Ergodic Theorem with Weighted Averages on Continuous Flows, Doct. Diss. Univ. Minn., 1965, Dissert. Abstrs,26, No. 9, 5451 (1966).
[248] R. N. Berk, ?Ergodic theory with recurrent weights,? Ann. Math. Stat.,39, No. 4, 1107?1114 (1968).
[249] T. Bewley, ?Sur l’application de théorèmes ergodiques aux groupes libres de transformations: un contre exemple,? C. R. Acad. Sci.,270, No. 23, A1553-A1534 (1970). · Zbl 0193.00904
[250] T. Bewley, ?Extensions of the Birkhoff and von Neumann ergodic theorems to semigroup actions,? Ann. Inst. H. Poincaré,B7, No. 4, 283?291 (1971). · Zbl 0226.28009
[251] J. R. Blum, ?A note on mixing transformations,? Isr. J. Math.,9, No. 4, 464?465 (1972). · Zbl 0209.36301
[252] J. R. Blum, H. D. Brunk, and D. C. Hanson, ?Roots of the one-sided N-shift,? in: Proc. Fifth Berkeley Symp. Math. Statist. and Probabil., 1965?1966, Vol. 2, Part 2, Berkeley-Los Angeles (1967), pp. 327?333. · Zbl 0202.33703
[253] J. R. Blum and B. Eisenberg, ?Generalized summing sequences and the mean ergodic theorem,? Proc. Am. Math. Soc.,42, No. 2, 423?429 (1974). · Zbl 0252.43002
[254] J. R. Blum, B. Eisenberg, and L.-S. Hahn, ?Ergodic theory and the measures of sets in the Bohr group,? Acata Sci. Math.,34, 17?24 (1973). · Zbl 0257.22009
[255] J. R. Blum and N. Friedman, ?On invariant measures for clases of transformations,? Z. Wahrscheinlichkeitstheorie und Verw. Geb.,8, No. 4, 301?305 (1967). · Zbl 0154.30503
[256] J. R. Blum and V. J. Mizel, ?A generalized Weyl equidistribution theorem for operators with applications,? Trans. Am. Math. Soc.,165, March, 291?307 (1972). · Zbl 0232.47005
[257] R. Bowen, ?Markov partitions for axiom A diffeomorphisms,? Am. J. Math.,92, No. 3, 725?747 (1970). · Zbl 0208.25901
[258] R. Bowen, ?Markov partitions and minimal sets for axiom A diffeomorphisms,? Am. J. Math.,92, No. 4, 907?918 (1970). · Zbl 0212.29104
[259] R. Bowen, ?Periodic points and measures for axiom A diffeomorphisms,? Trans. Am. Math. Soc.,154, 377?397 (1971). · Zbl 0212.29103
[260] R. Bowen, ?Entropy for group endomorphisms and homogeneous spaces,? Trans. Am. Math. Soc.,153, Jan., 401?414 (1971). · Zbl 0212.29201
[261] R. Bowen, ?Erratum to ?Entropy for group endomorphisms and homogeneous spaces?,? Trans. Am. Math. Soc.,181, 509?510 (1973). · Zbl 0275.22013
[262] R. Bowen, ?Entropy-expansive maps,? Trans. Am. Math. Soc.,164, 323?331 (1972). · Zbl 0229.28011
[263] R. Bowen, ?Periodic orbits for hyperbolic flows,? Am. J. Math.,94, No. 1, 1?30 (1972). · Zbl 0254.58005
[264] R. Bowen, ?The equidistribution of closed geodesies,? Am. J. Math.,94, No. 2, 413?423 (1972). · Zbl 0249.53033
[265] R. Bowen, ?One-dimensional hyperbolic sets for flows,? J. Diff. Equat.,12, No. 1, 173?179 (1972). · Zbl 0242.58005
[266] R. Bowen, ?Some systems with unique equilibrium states,? Math. System Theory,8, No. 3, 193?202 (1975). · Zbl 0299.54031
[267] R. Bowen, ?Symbolic dynamics for hyperbolic systems,? Lect. Notes Math.,318, 51?58 (1973). · Zbl 0257.54042
[268] R. Bowen, ?Symbolic dynamics for hyperbolic flows,? Am. J. Math.,95, No. 2, 429?460 (1973). · Zbl 0282.58009
[269] R. Bowen, ?Equilibrium states and the ergodic theory of Anosov diffeomorphisms,? Preprint (1974). · Zbl 0308.28010
[270] R. Bowen and D. Ruelle, ?Ergodic theory for axiom A flow,? Preprint (1974). · Zbl 0311.58010
[271] R. Bowen and P. Walters, ?Expansive one-parameter flows,? J. Diff. Equat.,12, No. 1, 180?193 (1972). · Zbl 0242.54041
[272] J. Brezin, R. Ellis, and L. Shapiro, ?Recognizing G-induced flows,? Isr. J. Math.,17, No. 1, 56?65 (1974). · Zbl 0284.58015
[273] J. R. Brown, ?A universal model for dynamical systems with quasidiscrete spectrum,? Bull. Am. Math. Soc.,75, No. 5, 1028?1030 (1969). · Zbl 0181.14902
[274] J. R. Brown, ?Inverse limits, entropy and weak isomorphisms for discrete dynamical systems,? Trans. Am. Math. Soc., 55?66 (1972).
[275] J. R. Brown, ?A model for ergodic automorphisms on groups,? Math. Syst. Theory,6, No. 3, 235?240 (1972). · Zbl 0239.22011
[276] A. Brunel, Sur Quelques Problems de la Theorie Ergodique Ponctuelle, These Doct. Sci. Math. Fac. Sci. Univ. Paris (1966).
[277] A. Brunel, ?New conditions for existence of invariant measures in ergodic theory,? Lect. Notes Math.,160, 7?17 (1970). · Zbl 0211.20501
[278] A. Brunel, ?Théorème ergodique ponctuel pour un semi-groupe commutatif finiment engendré de contractions de L1,? Ann. Inst. H. Poincaré,B9, No. 4, 327?343 (1973) (1974).
[279] A. Brunel and M. Keane, ?Ergodic theorems for operator sequences,? Z. Wahrscheinlichkeitstheorie und Verw. Geb.,12, No. 3, 231?240 (1969). · Zbl 0187.00904
[280] A. P. Calderón, ?Ergodic theory and translation-invariant operators,? Proc. Nat. Acad. Sci. USA,59, No. 2, 349?353 (1968). · Zbl 0185.21806
[281] R. V. Chacon, ?Change of velocity in flows,? J. Math. and Mech.,16, No. 5, 417?431 (1966). · Zbl 0158.30301
[282] R. V. Chacon, ?Transformations having continuous spectrum,? J. Math. and Mech.,16, No. 5, 399?415 (1966). · Zbl 0154.30602
[283] R. V. Chacon, ?A geometric construction of measure preserving transformations,? in: Proc. Fifth Berkeley Symposium on Math. Statist. and Probabil., 1965?66, Vol. 2, Part 2, Berkeley-Los Angeles (1967), pp. 361?374.
[284] R. V. Chacon, ?Approximation of transformations with continuous spectrum,? Pacific J. Math.,31, No. 2, 293?302 (1969). · Zbl 0183.31902
[285] R. V. Chacon, ?Approximation and spectra multiplicity,? Lect. Notes Math.,160, 18?27 (1970). · Zbl 0212.40101
[286] R. V. Chacon, ?Representation of measure preserving transformations,? in: Actes Congr. Int. Math., 1970, Vol. 2, Paris (1971), pp. 559?564.
[287] R. V. Chacon and S. A. McGrath, ?Estimates of positive contraction,? Pacific J. Math.,30, No. 3, 609?620 (1969). · Zbl 0182.19003
[288] R. V. Chacon and J. Olsen, ?Dominated estimates of positive contractions,? Proc. Am. Math. Soc.,20, No. 1, 266?271 (1969). · Zbl 0176.44602
[289] R. V. Chacon and T. Schwartzbauer, ?Commuting point transformations,? Z. Wahrscheinlichkeitstheorie und Verw. Geb.,11, No. 4, 277?287 (1969). · Zbl 0165.18903
[290] R. V. Chacon and T. Schwartzbauer, ?Approximation and invariance,? Lect. Notes Math.,160, 28?36 (1970). · Zbl 0214.31003
[291] J. Chatard, ?Applications des propriétés de moyenne d’un groupe localement compact á la théorie ergodique,? Ann. Inst. H. Poincare,B6, No. 4, 307?326 (1970) (1971). · Zbl 0208.15303
[292] J. Chatard, ?Sur une généralisation du théoreme de Birkhoff,? C.R. Acad. Sci.,275, No. 21, A1135-A1138 (1972). · Zbl 0242.28011
[293] C. K. Cheong, ?Ergodic and ratio limit theorems for ?-recurrent and semi-Markov processes,? Z. Wahrscheinlichkeitstheorie und Verw. Geb.,9, No. 4, 270?286 (1968). · Zbl 0162.49001
[294] G. Y. H. Chi and N. Dinculeanu, ?Projective limits of measure preserving transformations on probability spaces,? J. Multivar. Anal.,2, No. 4, 404?414 (1972). · Zbl 0249.28016
[295] J. R. Choski, ?Automorphisms of Baire measures on generalized cubes,? Z. Wahrscheinlichkeitstheorie und Verw. Geb.,22, No. 3, 195?204 (1972). · Zbl 0235.28008
[296] J. R. Choksi, ?Automorphisms of Baire measures on generalized cubes. II,? Z. Wahrscheinlichkeitstheorie und Verw. Geb.,23, No. 2, 97?102 (1972). · Zbl 0235.28008
[297] Ching Chou, ?Minimal sets and ergodic measures for ?N\(\backslash\)N,? Ill. J. Math.,13, No. 4, 777?788 (1969). · Zbl 0179.35603
[298] R. R. Coiffman and G. Weiss, ?Maximal functions andHp spaces defined by ergodic transformations,? Proc. Nat. Acad. Sci. USA,70, No. 6, 1761?1763 (1973). · Zbl 0257.46077
[299] C. M. Colebrook and J. H. B. Kemperman, ?On nonnormal numbers,? Proc. Koninkl. Nederl. Akad. Wet.,A71, No. 1, 11 (1968); Indag. Math.,30, No. 1, 1?11 (1968). · Zbl 0216.32102
[300] J. P. Conze, ?Extensions de systemes dynamiques par des endomorphismes de groupes compacts,? C.R. Acad. Sci., Paris,268, 1369?1372 (1969). · Zbl 0176.11701
[301] J. P. Conze, ?Entropie des flots des transformations affines sur les espaces homogenes compacts,? C.R. Acad. Sci.,270, No. 8, A547-A548 (1970). · Zbl 0198.38601
[302] J. P. Conze, ?Entropie d’un groupe Abelien de transformations,? Z. Wahrscheinlichkeitstheorie und Verw. Geb.,25, No. 1, 11?30 (1972). · Zbl 0261.28015
[303] J. P. Conze, ?Extensions de systèmes dynamiques par des endomorphismes de groupes compacts,? Ann. Inst. H. Poincaré,B8, No. 1, 33?66 (1972). · Zbl 0274.46035
[304] J. P. Conze, ?Convergence des moyennes ergodiques pour des sous-suites,? Bull. Soc. Math. France, Mem. No. 35, 7?15 (1973). · Zbl 0285.28017
[305] J. P. Conze, ?Equations fonctionelles et systèmes induits en théorie ergodique,? Z. Wahrscheinlichkeitstheorie und Verw. Geb.,23, No. 1, 75?82 (1972). · Zbl 0246.28016
[306] E. M. Coven and M. S. Keane, ?The structure of substitution minimal sets,? Trans. Am. Math. Soc.,162, 89?102 (1971). · Zbl 0222.54053
[307] I. Cuculescu and C. Foias, ?An individual ergodic theorem for positive operators,? Rev. Roumaine Math. Pure et Appl.,11, No. 5, 581?594 (1966).
[308] Dang-Ngoc-Nghiem, ?On the classification of dynamical systems,? Ann. Inst. H. Poincarè,B9, No. 4, 397?425 (1973) (1974). · Zbl 0278.58009
[309] Dang-Ngoc-Nghiem, ?Partie finie d’un système dynamique et deux nouvelles demonstrations du théorème de Hopf,? Z. Wahrscheinlichkeitstheor. und Verw. Geb.,27, No. 2, 131?140 (1973). · Zbl 0253.93004
[310] M. Denker, ?Une demonstration nouvelle du théorème de Goodwyn,? C.R. Acad. Sci., No. 15, A735-A738 (1972). · Zbl 0239.28015
[311] M. Denker, ?On strict ergodicity,? Math. Z.,134, 231?253 (1973). · Zbl 0275.28018
[312] M. Denker, ?Finite generators for ergodic, measure-preserving transformations,? Z. Wahrscheinlichkeitstheor. und Verw. Geb.,29, No. 1, 45?55 (1974). · Zbl 0278.28006
[313] M. Denker, Untersuchungen über eine Spezielle Klasse von Zerlegungen eines Kompakten Metrischen Raumes, Diss., Doktorgrad. Naturwiss. Fak. Friedrich-Alexander-Univ. Er-lange-Nürberg (1972).
[314] M. Denker and E. Eberlein, ?Ergodic flows are strictly ergodic,? Advances in Math.,13, 437?473 (1974). · Zbl 0283.28012
[315] Y. Derriennic and M. Lin, ?On invariant measures and ergodic theorems for positive operators,? J. Funct. Anal.,13, No. 3, 252?267 (1973). · Zbl 0262.28011
[316] N. Dinculeany and C. Foias, ?Algebraic models for measure preserving transformations,? Trans. Am. Math. Soc.,184, No. 2, 215?237 (1968).
[317] W. G. Dotson, Jr., ?An application of ergodic theory to the solution of linear functional equations in Banach spaces,? Bull. Am. Math. Soc.,75, No. 2, 347?352 (1969). · Zbl 0187.07102
[318] J. K. Dugdale, ?Kolmogorov automorphisms in ?-finite measure spaces,? Publs. Math.,14, No. 1?4, 79?81 (1967). · Zbl 0162.07202
[319] E. Eberlein, ?Toeplitzfolgen und Gruppentranslationen,? Archiv d. Math.,22, 291?301 (1971). · Zbl 0219.28015
[320] E. Eberlein, Einbettung von Strömungen in Funktionenräume durch Errenger von Endlichen Typus, Diss. Doctorgrad. Naturwiss. Fak. Friedrich-Alexander-Univ. Erlangen-Nürnberg (1972). · Zbl 0268.28011
[321] E. Eberlein, ?Einbettung von Strömungen in Funktionenräume durch Errenger von endlichen Typus,? Z. Wahrscheinlichkeitstheor. und Verw. Geb.,27, No. 4, 227?291 (1973). · Zbl 0268.28011
[322] P. Eberlein, ?Geodesic flow in certain manifolds without conjugate points,? Trans. Am. Math. Soc.,167, 151?170 (1972). · Zbl 0209.53304
[323] P. Eberlein, ?When is a geodesic flow of Anosov type I,? J. Different. Geom.,8, No. 3, 437?463 (1973). · Zbl 0285.58008
[324] P. Eberlein, ?When is a geodesic flow of Anosov type II,? J. Different. Geom.,8, No. 4, 565?577 (1973). · Zbl 0295.58009
[325] D. A. Edwards, ?A maximal ergodic theorem for Abel means of continuous-parameter operator semigroup,? J. Funct. Anal.,7, No. 1, 61?70 (1971). · Zbl 0209.45003
[326] J. Egawa, ?Invariant positive measures for flows in the plane,? Funkc. Ekvacioj.,15, No. 1, 23?38 (1972).
[327] J. W. England and N. F. Martin, ?On weak mixing metric automorphisms,? Bull. Am. Math. Soc.,74, No. 3, 505?507 (1968). · Zbl 0174.34503
[328] J. W. England and N. F. Martin, ?On the entropy of isometries of compact metric spaces,? Proc. Am. Math. Soc.,19, No. 4, 799?800 (1968). · Zbl 0183.51502
[329] D. Epstein and M. Shub, ?Expanding endomorphisms of flat manifolds,? Topology,7, No. 2, 139?141 (1968). · Zbl 0157.30403
[330] T. Erber, B. Schweizer, and A. Sklar, ?Mixing transformations on metric spaces,? Communs. Math. Phys.,29, No. 4, 311?317 (1973). · Zbl 0269.28005
[331] M. Falkowitz, ?On finite invariant measures for Markov operators,? Proc. Am. Math. Soc.,38, No. 3, 553?557 (1973). · Zbl 0275.60080
[332] N. A. Fava, ?Weak type inequalities for product operators,? Stud. Math.,42, No. 3, 271?288 (1972). · Zbl 0237.47006
[333] J. Feldman and M. Smorodinsky, ?Bernoulli flows with infinite entropy,? Ann. Math. Stat.,42, No. 1, 351?352 (1971). · Zbl 0221.60038
[334] D. Fife, ?Spectral decomposition of ergodic flows on LP,? Bull. Am. Math. Soc.,76, No. 1, 138?141 (1970). · Zbl 0207.43705
[335] R. Fischer, ?Ergodische Eigenschaften komplexer Ziffernentwicklungen,? Sitzungsber. Österr. Akad. Wiss. Math.-Naturwiss. Kl.,180, No. 1?3, 49?68 (1972).
[336] R. Fischer, ?Ergodische Theorie von Ziffernentwicklungen in Wahrscheinlichkeitsräumen,? Math. Z.,128, No. 3, 217?230 (1972). · Zbl 0231.10033
[337] M. Flato, B. Nagel and D. Stenheimer, ?Flots ergodiques et measures complexes,? C.R. Acad. Sci.,272, No. 3, A892-A895 (1971). · Zbl 0207.06003
[338] D. Florea, ?Sur un théorème de V. M. Alexeev,? Rev. Roumaine Math. Pures et Appl.,14, No. 7, 987?990 (1969).
[339] E. G. Flytzanis, ?Ergodicity of the Cartesian product,? Trans. Am. Math. Soc.,186, Dec., 171?176 (1973).
[340] S. R. Foguel, ?The ergodic theory of positive operators on continuous functions,? Ann. Scuola Norm. Super. Pisa. Sci. Fis. e Mat.,27, No. 1, 19?51 (1973).
[341] C. Foias, ?Projective tensor products in ergodic theory,? Rev. Roumaine Math. Pures et Appl.,12, No. 9, 1221?1226 (1967).
[342] H. Föllmer, ?On entropy and information gain in random fields,? Z. Wahrscheinlichkeitstheorie und verw. Geb.,26, No. 3, 207?217 (1973). · Zbl 0258.60029
[343] H. Fong and L. Sucheston, ?On a mixing property of operators in Lp spaces,? Z. Wahrscheinlichkeitstheor. und Verw. Geb.,28, No. 2, 165?171 (1974). · Zbl 0267.47004
[344] H. Fong and L. Sucheston, ?On unaveraged convergence of positive operators in Lebesgue space,? Trans. Am. Math. Soc.,179, May, 383?397 (1973). · Zbl 0266.60015
[345] H. Fong and L. Sucheston, ?On the ratio ergodic theorem for semi-groups,? Pacific J. Math.,39, No. 3, 659?667 (1971). · Zbl 0228.28012
[346] F. Forelli, ?Analytic and quasi-invariant measures,? Acta Math.,118, 33?59 (1967). · Zbl 0171.34201
[347] F. Forelli, ?Conjugate functions and flows,? Quart J. Math.,20, No. 7, 215?233 (1969). · Zbl 0177.18501
[348] J. Franks, ?Anosov diffeormorphism on tori,? Trans. Am. Math. Soc.,145, 117?124 (1969).
[349] J. Franks, ?Anosov diffeomorphisms,? in: Global Analysis, Vol. 14, Proc. Symp. Pure. Math., Providence (1970). · Zbl 0207.54304
[350] N. A. Friedman, ?On mixing entropy and generators,? J. Math. Anal. and Appl.,26, No. 3, 512?528 (1969). · Zbl 0187.07103
[351] N. A. Friedman, Introduction to Ergodic Theory, Vol. 4, Van Nostrand, New York (1970). · Zbl 0212.40004
[352] N. A. Friedman, ?Bernoulli shifts induce Bernoulli shifts,? Adv. Math.,10, No. 1, 39?48 (1973). · Zbl 0246.28010
[353] N. A. Friedman and D. S. Ornstein, ?On isomorphism of weak Bernoulli transformations,? Adv. Math.,5, No. 3, 365?394 (1970). · Zbl 0203.05801
[354] N. A. Friedman and D. S. Ornstein, ?Ergodic transformations induce mixing transformations,? Adv. Math.,10, No. 1, 147?163 (1973). · Zbl 0246.28011
[355] M. Fukushima, ?Almost polar sets and an ergodic theorem,? J. Math. Soc. Jap.,26, No. 1, 17?32 (1974). · Zbl 0266.60057
[356] C. O. Wilde (editor), Functional Analysis. Proc. Sympos. Held at Montery, California, Oct., 1969, Academic Press, New York (1970), VII.
[357] H. Furstenberg, ?Disjointness in ergodic theory, minimal sets, and a problem in diophatine approximation,? Math. Syst. Theory,1, No. 1, 1?49 (1967). · Zbl 0146.28502
[358] H. Furstenberg, ?The unique ergodicity of the horocycle flow,? Lect. Notes Math.,318, 95?115 (1973). · Zbl 0256.58009
[359] G. Gallavotti, ?Ising model and Bernoulli schemes in one dimension,? Communs. Math. Phys.,31, No. 2, 183?190 (1973). · Zbl 0262.60061
[360] G. Gallavotti and D. Ornstein, ?Billiards and Bernoulli schemes,? Commun. Math. Phys.,38, No. 2, 83?101 (1974). · Zbl 0313.58017
[361] S. Goldstein, ?Space-time ergodic properties of system of infinitely many independent particles,? Commun. Math. Phys.,39, No. 4, 303?328 (1975). · Zbl 0361.60088
[362] S. Goldstein, O. Landford, and J. L. Leibowitz, ?Ergodic properties of simple model system with collisions,? J. Math. Phys.,14, No. 9, 1228?1230 (1973).
[363] T. N. T. Goodman, ?Relating topological entropy and measure entropy,? Bull. London Math. Soc.,3, No. 2, 176?180 (1971). · Zbl 0219.54037
[364] T. N. T. Goddman, ?Maximal measure for expansive homeomorphisms,? J. London Math. Soc.,5, No. 3, 439?444 (1972). · Zbl 0254.28017
[365] G. R. Goodson, ?Simple approximation and skew products,? J. London Math. Soc.,7, No. 1, 147?156 (1973). · Zbl 0267.28007
[366] L. W. Goodwyn, ?Topological entropy bounds measure-theoretic entropy,? Proc. Am. Math. Soc.,23, No. 3, 679?688 (1969). · Zbl 0186.09804
[367] L. W. Goodwyn, ?A characterization of symbolic cascades in terms of expansiveness and topological entropy,? Math. Syst, Theor.,4, No. 2, 157?159 (1970). · Zbl 0191.21503
[368] L. W. Goodwyn, ?Topological entropy bounds measure-theoretic entropy,? Lect. Notes Math.,235, 69?84 (1971). · Zbl 0238.54043
[369] L. W. Goodwyn, ?Comparing topological entropy with measure-theoretic entropy,? Am. J. Math.,94, No. 2, 366?388 (1972). · Zbl 0249.54021
[370] L. W. Green, ?Group-like decompositions of Riemannian bundles,? Lect. Notes Math.,318, 126?139 (1973). · Zbl 0255.53026
[371] L. W. Green, ?The generalized geodesic flow,? Duke Math. J.,41, No. 1, 115?126 (1974). · Zbl 0283.58011
[372] C. Grillenberger, ?Constructions of strictly ergodic systems. I. Given entropy,? Z. Wahrscheinlichkeitstheor. und Verw. Geb.,25, No. 4, 323?334 (1973). · Zbl 0253.28004
[373] C. Grillenberger, ?Constructions of strictly ergodic systems. II. K-systems,? Z. Wahrscheinlichkeitstheor. und Verw. Geb.,25, No. 4, 335?342 (1973). · Zbl 0253.28005
[374] S. B. Guthery, ?An inversion algorithm for one-dimensional F-expansions,? Ann. Math. Stat.,41, No. 5, 1472?1490 (1970). · Zbl 0214.43703
[375] A. Hannen, ?Processes ponctuels stationaires et flot spéciaux,? Ann. Inst. H. Poincaré,B7, No. 1, 23?30 (1971).
[376] A. B. Hajian and Y. Ito, ?Conservative positive contractions in L1,? in: Proc. Fifth Berkeley Sympos. Math. Statist. and Probabil., 1965?66, Vol. 2, Part 2, Berkeley-Los Angles (1967), pp. 375?404.
[377] A. B. Hajian and Y. Ito, ?Weakly wandering and related sequences,? Z. Wahrscheinlich-keitstheor. und Verw. Geb.,8, No. 4, 315?324 (1967). · Zbl 0163.06201
[378] A. B. Hajian and Y. Ito, ?Cesaro sums and measurable transformations,? J. Comb. Theory,7, No. 3, 239?254 (1969). · Zbl 0191.05901
[379] A. B. Hajian and Y. Ito, ?Weakly wandering sets and invariant measures for a group of transformations,? J. Math. and Mech.,18, No. 12, 1203?1216 (1969). · Zbl 0189.05801
[380] A. B. Hajian, Y. Ito, and S. Kakutani, ?Invariant measures and orbits of dissipative transformations,? Adv. Math.,9, No. 1, 52?65 (1972). · Zbl 0236.28010
[381] F. Hahn, ?Discrete real time flows with quasidiscrete spectra and algebras generated by exp q(t),? Isr. J. Math.,16, No. 1, 20?37 (1973). · Zbl 0272.54033
[382] F. Hahn and Y. Katznelson, ?On the entropy of uniquely ergodic transformations,? Trans. Am. Math. Soc.,126, No. 2, 335?360 (1967). · Zbl 0191.21502
[383] F. Hahn and W. Parry, ?Some characteristic properties of dynamical systems with quasidiscrete spectra,? Math. Syst. Theory,2, No. 2, 179?190 (1968). · Zbl 0167.32902
[384] G. Hansel, ?Automorphismes induits et valeurs propres,? Z. Wahrscheinlichkeitstheor. und Verw. Geb.,25, No. 2, 155?157 (1973). · Zbl 0256.28013
[385] G. Hansel, ?Strict uniformity in ergodic theory,? Math. Z.,135, No. 3, 221?248 (1974). · Zbl 0261.54034
[386] G. Hansel and J. P. Raoult, ?Ergodicity, uniformity and unique ergodicity,? Indiana Univ. Math. J.,23, No. 3, 221?237 (1973). · Zbl 0275.28017
[387] D. L. Hanson and G. Pledger, ?On the mean ergodic theorem for weighted averages,? Z. Wahrscheinlichkeitstheor. und Verw. Geb.,13, No. 2, 141?149 (1969). · Zbl 0183.47203
[388] D. L. Hanson and F. T. Wright, ?On the existence of equivalent finite invariant measures,? Z. Wahrscheinlichkeitstheor. und Verw. Geb.,14, No. 3, 200?202 (1970). · Zbl 0185.44101
[389] W. K. Hayman and S. M. Rudolfer, ?On the relation between some metric invariants for Markov shifts,? Period. Math. Hungr.,2, No. 1?4, 133?148 (1972). · Zbl 0243.28015
[390] G. A. Hedlund, ?Endomorphisms and automorphisms of the shifts dynamical systems,? Math. Syst. Theory,3, 320?375 (1969). · Zbl 0182.56901
[391] G. Helmberg, ?Über konservative Transformationen,? Math. Ann.,165, No. 1, 44?61 (1966). · Zbl 0178.38702
[392] G. Helmberg, ?Über mittlere Ruckkehrzeit unter einer masstreuen Strömung,? Z. Wahrscheinlichkeitstheor. und Verw. Geb.,13, No. 2, 165?179 (1969). · Zbl 0176.33901
[393] G. Helmberg, ?On the converse of Hopfs ergodic theorem,? Z. Wahrscheinlichkeitstheor. und Verw. Geb.,21, No. 1, 77?80 (1971). · Zbl 0209.44603
[394] G. Helmberg and F. H. Simons, ?A dualization of Kac’s recurrence theorem,? Proc. Koninkl. Nederl. Akad. Wet.,A69, No. 5, 608?615 (1966). · Zbl 0178.05101
[395] G. Helmberg and F. H. Simons, ?On the conservative parts of the Markov processes induced by a measurable transformation,? Z. Wahrscheinlichkeitstheor. und Verw. Geb.,11, No. 3, 165?180 (1969). · Zbl 0165.52501
[396] G. Helmberg and F. H. Simons, ?Aperiodic transformations,? Z. Wahrscheinlichkeitstheor. und Verw. Geb.,13, No. 2, 180?190 (1969). · Zbl 0176.33902
[397] M. W. Hirsch, J. Palis, C. Pugh, and M. Shub, ?Neighborhoods of hyperbolic sets,? Inventiones Math.,9, 121?134 (1970). · Zbl 0191.21701
[398] M. W. Hirsch and C. Pugh, ?Stable manifolds and hyperbolic sets,? Bull. Am. Math. Soc.,75, No. 1, 149?152 (1969). · Zbl 0199.27103
[399] M. W. Hirsch, C. Pugh, and M. Shub, ?Invariant manifold,? Preprint.
[400] M. W. Hirsch, C. Pugh, and M. Shub, ?Invariant manifolds,? Bull. Am. Math. Soc.,76, No. 5, 1015?1019 (1970). · Zbl 0226.58009
[401] E. Hopf, Ergodic theory and the geodesic flow on surfaces of constant negative curvature,? Bull. Am. Math. Soc.,77, No. 6, 863?877 (1971). · Zbl 0227.53003
[402] P. D. Humphries, ?Change of velocity in dynamical systems,? J. London Math. Soc.,7, No. 4, 747?757 (1974). · Zbl 0283.54024
[403] N. E. Hurt, ?Entropy of a fibered dynamical system,? Int. J. Theor. Phys.,7, No. 3?4, 263?266 (1973).
[404] V. I. Istr?tescu, ?On a class of operators and ergodic theory. I,? Rev. Roum. Math. Pures et Appl.,19, No. 4, 411?420 (1974).
[405] S. Ito, ?An estimate from above for an entropy and the topological entropy of a C1-diffeomorphism,? Proc. Jap. Acad.,46, No. 3, 226?230 (1970). · Zbl 0205.54302
[406] S. Ito, ?An elementary proof of Abramov’s result on the entropy of a flow,? Nagoya Math. J.,41, 1?5 (1971). · Zbl 0235.94011
[407] S. Ito, H. Murata, and H. Totoki, ?Remarks on the isomorphism theorems for weak Bernoulli transformations in the general case,? Publ. Res. Inst. Math. Sci.,7, No. 3, 541?580 (1972). · Zbl 0246.28012
[408] K. Jacobs, ?Invariant and noninvariant measures,? Lect. Notes Math.,31, 118?135 (1967). · Zbl 0174.34501
[409] K. Jacobs, Einige Neuere Ergebnisse der Ergodentheorie, Sitzungsber. Berliner Math. Ges. (1965?1966). · Zbl 0138.03702
[410] K. Jacobs, ?On Poincare’s recurrence theorem,? in: Proc. Fifth Berkeley Sympos. Math. Statist. and Probabil. 1965?66, Vol. 2, Part 2, Berkeley-Los Angeles (1967), pp. 375?404.
[411] K. Jacobs, ?Systemes dynamiques Riemannien,? Czechosl. Mat.,20, No. 4, 628?631 (1970).
[412] K. Jacobs, ?Combinatorial constructions in ergodic theory,? in: Proc. Int. Conf. Funct. Anal. and Relat. Topics, Tokyo, 1969, Tokyo (1970), pp. 398?399.
[413] K. Jacobs, ?Lipshitz functions and the prevalence of strict ergodicity for continuoustime flows,? Lect. Notes Math.,160, 87?124 (1970).
[414] K. Jacobs, ?Recent development in ergodic theory,? Erlangen, Preprint (1974).
[415] K. Jacobs and M. Keane, ?0?1-sequences of Toeplitz type,? Z. Wahrscheinlichkeitstheor. und Verw. Geb.,13, 123?131 (1969). · Zbl 0195.52703
[416] R. I. Jewett, ?The prevalence of uniquely ergodic systems,? J. Math. and Mech.,19, No. 8, 717?729 (1970). · Zbl 0192.40601
[417] R. I. Jewett and S. Schwartzman, ?Dynamical systems with an invariant space of vector fields,? Trans. Am. Math. Soc.,147, No. 1, 127?134 (1970). · Zbl 0198.56902
[418] L. K. Jones, ?A mean ergodic theorem for weakly mixing operators,? Adv. Math.,7, No. 3, 211?213 (1971). · Zbl 0221.47007
[419] L. K. Jones, ?A short proof of Sucheston’s characterisation of mixing,? Z. Wahrscheinlichkeitstheor. und Verw. Geb.,23, No. 2, 83?84 (1972). · Zbl 0247.28009
[420] L. K. Jones, ?A generalization of the mean ergodic theorem in Banach spaces,? Z. Wahrscheinlichkeitstheor. und Verw. Geb.,27, No. 2, 105?107 (1973). · Zbl 0285.47005
[421] L. K. Jones and U. Krengel, ?On transformations without finite invariant measure,? Adv. Math.,12, No. 3, 275?295 (1974). · Zbl 0286.28017
[422] L. K. Jones and W. Parry, ?Compact Abelian group extensions of dynamical systems. II,? Compos. Math.,25, No. 2, 135?147 (1972). · Zbl 0243.54039
[423] S. Kakutani, ?Ergodic theory of shift transformations,? in: Proc. Fifth Berkeley Sympos. Math. Statis. and Probabil. 1965?66, Vol. 2, Part 2, Berkeley-Los Angeles (1967), pp. 405?414.
[424] S. Kakutani, ?Classification of ergodic groups of automorphisms,? in: Proc. Int. Conf. Funct. Anal. and Relat. Topics, Tokyo, 1969, Tokyo (1970), pp. 392?397.
[425] S. Kakutani, ?Examples of ergodic measure preserving transformations which are weakly mixing but not strongly mixing,? Lect. Notes Math.,318, 143?149 (1973). · Zbl 0267.28008
[426] T. Kamae, ?A topological invariant of substitution minimal sets,? J. Math. Soc. Jap.,24, No. 2, 285?305 (1972). · Zbl 0232.54052
[427] Ya. Katznelson, ?Ergodic automorphisms of Tn are Bernoulli shifts,? Isr. J. Math.,10, No. 2, 186?195 (1971). · Zbl 0219.28014
[428] Y. Katznelson and B. Weiss, ?The construction of quasi-invariant measures,? Isr. J. Math.,12, No. 1, 1?4 (1972). · Zbl 0237.28011
[429] Y. Katznelson and B. Weiss, ?Commuting measure-preserving transformations,? Isr. J. Math.,12, No. 2, 161?173 (1972). · Zbl 0239.28014
[430] M. Keane, ?Sur les measures quasi-ergodiques des translations irrationelles,? C.R. Acad. Sci.,272, No. 1, A54-A55 (1971). · Zbl 0202.33704
[431] M. Keane, ?Contractibility of the automorphism group of a nonatomic measure space,? Proc. Am. Math. Soc.,26, No. 3, 420?422 (1970). · Zbl 0201.56701
[432] M. Keane, ?Generalized Morse sequences,? Z. Wahrscheinlichkeitstheor. und Verw. Geb.,10, 335?353 (1968). · Zbl 0162.07201
[433] M. Keane, ?Sur les mesures invariants d’un recouvrement régulier,? C.R. Acad. Sci.,272, No. 9, A585-A587 (1971). · Zbl 0206.06403
[434] M. Keane, ?Interval exchange transformations,? University of Amsterdam, Department of Mathematics, March, 1974, Preprint. · Zbl 0292.54055
[435] M. Keane and P. Michel, ?Généralization d’un lemme de ?découpage? de Rokhlin,? C.R. Acad. Sci.,274, No. 11, A926-A928 (1972). · Zbl 0225.28014
[436] H. G. Keynes, ?The structure of weakly mixing minimal transformation groups,? Ill. J. Math.,15, No. 3, 475?489 (1971). · Zbl 0213.25601
[437] Y. Kijima and W. Takahashi, ?Adjoint ergodic theorems for amenable semigroups of operators,? Sci. Repts. Yokohama Nat. Univ., Sec. 1, No. 20, 1?4 (1973). · Zbl 0307.47042
[438] Kim Choo-Whan, ?A generalization of Ito’s theorem concerning the pointwise ergodic theorem,? Ann. Math. Stat.,39, No. 6, 2145?2148 (1968). · Zbl 0181.43502
[439] E. Kin, ?Skew products of dynamical systems,? Trans. Am. Math. Soc.,166, 27?43 (1972). · Zbl 0235.28010
[440] E. Kin, ?Ergodic and mixing properties of measure preserving transformations,? Proc. Japan Acad.,46, No. 1, 47?50 (1970). · Zbl 0197.33403
[441] E. Kin, ?A simple geometric construction of weakly mixing flows which are not strongly mixing,? Proc. Jap. Acad.,47, No. 1, 50?53 (1971). · Zbl 0219.28013
[442] E. Kin, ?The general random ergodic theorem,? Z. Wahrscheinlichkeitstheor. und Verw. Geb.,22, No. 2, 120?135 (1972). · Zbl 0255.28020
[443] E. Kin, ?The general random ergodic theorem. II,? Z. Wahrscheinlichkeitstheor. und Verw. Geb.,22, No. 2, 136?144 (1972). · Zbl 0261.28012
[444] J. F. C. Kingman, ?An ergodic theorem,? Bull. London Math. Soc.,1, No. 3, 339?340 (1969). · Zbl 0183.47301
[445] E. M. Klimko, ?On the entropy of a product endomorphism in infinite measure space,? Z. Wahrscheinlichkeitstheor. und Verw. Geb.,12, No. 4, 290?292 (1969). · Zbl 0184.40103
[446] E. M. Klimko and L. Sucheston, ?On convergence of information in spaces with infinite invariant measure,? Z. Wahrscheinlichkeitstheor. und Verw. Geb.,10, No. 3, 226?235 (1968). · Zbl 0165.53401
[447] E. M. Klimko and L. Sucheston, ?An operator ergodic theorem for sequences of functions,? Proc. Am. Soc.,20, No. 1, 272?276 (1969). · Zbl 0165.37403
[448] W. Klingenberg, ?Riemannian manifolds with geodesic flow of Anosov type,? Ann. Math.,99, No. 1, 1?13 (1974). · Zbl 0272.53025
[449] M. Kowada, ?On a complete metric invariant for group automorphisms on the torus,? Tohoku Math. J.,22, No. 4, 525?535 (1970). · Zbl 0213.34101
[450] M. Kowada, ?The orbit-preserving transformation groups associated with a measurable flow,? J. Math. Soc. Jap.,24, No. 3, 355?373 (1972). · Zbl 0234.28009
[451] M. Kowada, ?Convergence rate in the ergodic theorem for an analytic flow on the torus,? Lect. Notes Math.,330, 251?254 (1973). · Zbl 0282.28008
[452] U. Krengel, ?On the entropy of flows,? Colloq. Inform. Theory, Dbrencen, 1967. Abstracts. Budapest.
[453] U. Krengel, ?Entropy of conservative transformations,? Z. Wahrscheinlichkeitstheor. und Verw. Geb.,7, No. 3, 161?181 (1967). · Zbl 0183.19303
[454] U. Krengel, ?Darstellungssätze für Strömungen und Halbströmungen. I,? Math. Ann.,176, No. 3, 181?190 (1968). · Zbl 0167.32704
[455] U. Krengel, ?A local ergodic theorem,? Invent. Math.,6, No. 4, 329?333 (1969). · Zbl 0165.37402
[456] U. Krengel, ?Classification of states for operators,? in: Proc Fifth Berkeley Sympos. Math. Statist. and Probabil., 1965?66, Vol. 2, Part 2, Berkeley-Los Angeles (1967), pp. 415?429.
[457] U. Krengel, ?Darstellungssätze für Strömungen and Halbströmungen. II,? Math. Ann.,182, No. 1, 1?39 (1969). · Zbl 0167.32801
[458] U. Krengel, ?Transformations without finite invariant measure have finite strong generators,? Lect. Notes Math.,160, 133?157 (1970).
[459] U. Krengel, ?On certain analogous difficulties in the investigation of flows in a probability space and a transformations in a infinite measure space,? in: Funct. Analysis, Proceedings of a Symposium, C. O. Wilde (editor) Academic Press, New York (1970), pp. 75?91.
[460] U. Krengel, ?On the individual ergodic theorem for subsequences,? Ann. Math. Stat.,42, No. 3, 1091?1095 (1971). · Zbl 0216.09603
[461] U. Krengel, ?K-flows are foward deterministic, backward completely nondeterministic stationary point processes,? J. Math. Anal. und Appl.,35, No. 3, 611?620 (1971). · Zbl 0215.26105
[462] U. Krengel, ?Weakly wandering vectors and weakly independent partitions,? Trans. Am. Math. Soc.,164, Febr., 199?226 (1972). · Zbl 0205.13903
[463] U. Krengel, ?Recent results on generators in ergodic theory,? in: Trans. Sixth Prague Conf. Inform. Theory Statis. Decis. Funct. Random Proces., Prague (1973), pp. 465?482
[464] U. Krengel and L. Sucheston, ?On mixing in infinite measure spaces,? Bull. Am. Math. Soc.,74, No. 6, 1150?1155 (1968). · Zbl 0164.06102
[465] U. Krengel and L. Sucheston, ?Note on shift invariant sets,? Ann. Math. Stat.,40, No. 2, 694?696 (1969). · Zbl 0175.16603
[466] U. Krengel and L. Sucheston, ?On mixing in infinite measure space,? Z. Wahrscheinlichkeitstheor. und Verw. Geb.,13, No. 2, 150?164 (1969). · Zbl 0176.33804
[467] K. Krickeberg, ?Mischende Transformationen auf Mannigfaltigkeiten unendlichen Massen,? Z. Wahrscheinlichkeitstheor. und Verw. Geb.,7, No. 4, 235?247 (1967). · Zbl 0158.16503
[468] K. Krickeberg, ?Strong mixing properties of Markov chains with infinite invariant measure,? in: Proc. Fifth Bekeley Sympos. Math. Statist. and Probabil., 1965?66, Vol. 2, Part 2, Berkeley-Los Angeles (1967), pp. 431?446.
[469] W. Krieger, ?On the isomorphy problem for ergodic equivalence relations,? Math. Z.,103, No. 1, 78?84 (1968). · Zbl 0177.30902
[470] W. Krieger, ?On nonsingular transformations of a measure space,? Z. Wahrscheinlichkeitstheor. und Verw. Geb.,11, No. 2, 83?97, 98?119 (1969). · Zbl 0185.11901
[471] W. Krieger, ?On nonsingular transformations of a measure space. II,? Z. Wahrscheinlichkeitstheor. und Verw. Geb.,11, No. 2, 98?119 (1969). · Zbl 0185.11901
[472] W. Krieger, ?On entropy and generators of measure-preserving transformations,? Trans. Am. Math. Soc.,119, No. 2, 453?464 (1970). · Zbl 0204.07904
[473] W. Krieger, ?On constructing nonisomorphic hyperfinite factors of type III,? J. Funct. Anal.,6, No. 1, 97?109 (1970). · Zbl 0209.44601
[474] W. Krieger, ?On the Araki-Woods asymptotic ratio set and nonsingular transformations of a measure space,? Lect. Note Math.,160, 158?177 (1970). · Zbl 0213.34103
[475] W. Krieger, ?On generators in exhaustive ?-algebras of ergodic measure-preserving transformations,? Z. Wahrscheinlichkeitstheor. und Verw. Geb.,20, No. 1, 75?82 (1971). · Zbl 0214.07201
[476] W. Krieger, ?On quasi-invariant measures on uniquely ergodic systems,? Invent. Math.,14, No. 3, 184?196 (1971). · Zbl 0219.54038
[477] W. Krieger, ?On a class of hyperfinite factors that arise from null-recurrent Markov chains,? J. Funct. Anal.,7, No. 1, 27?42 (1971). · Zbl 0215.25901
[478] W. Krieger, ?On nonsingular transformations that arise from Kolmogoroff systems,? Z. Wahrscheinlichkeitstheor. und Verw. Geb.,22, No. 1, 91?94 (1972). · Zbl 0234.28010
[479] W. Krieger, ?On the infinite product construction of a nonsingular transformation of a measure space,? Invent. Math.,15, No. 2, 144?163 (1972). · Zbl 0232.28012
[480] W. Krieger, ?On unique ergodicity,? in: Proc. Sixth Berkely Symp. Math. Statist. and Probabil., Vol. 2, Berkeley-Los Angeles (1972), pp. 327?345. · Zbl 0262.28013
[481] B. Kronfeld, ?Some properties of invertible ergodic transformations,? Glas. Mat.,5, No. 1, 35?41 (1970). · Zbl 0202.05003
[482] B. Kronfeld, ?Ergodic transformations and independence,? Glas. Mat.,5, No. 2, 221?226 (1970). · Zbl 0239.28012
[483] E. Krug, Folgentropie für Abelsche Gruppen von Automorphismen, Diss. Doktorgrad, Naturwiss. Fak. Friedrich-Alexander-Univ. Erlangen-Nürnberg (1973).
[484] E. Krug and D. Newton, ?On sequence entropy of automorphisms of a Lebesgue space,? Z. Wahrscheinlichkeiststheor. und Verw. Geb.,24, No. 3, 211?214 (1972). · Zbl 0237.28009
[485] K. Krzyzewski, ?On expanding mappings,? Bull. Acad. Pol. Sci. Ser. Sci. Math. Astron. et. Phys.,19, No. 1, 23?24 (1971).
[486] K. Krzyzewski, ?On connection between expanding mappings and Markov chains,? Bull. Acad. Pol. Sci. Ser. Math. Astron. et Phys.,19, No. 4, 291?293 (1973).
[487] K. Krzyzewski, ?On a problem of Rohlin,? Bull. Acad. Pol. Sci. Ser. Sci. Math. Astron. et. Phys.,20, No. 3, 207?210 (1972).
[488] K. Krzyzewski, ?Expanding mappings and Bernoulli shifts,? Var Publs. Ser. Mat. Inst. Aarhus Aarhus Univ., No. 23, 1?3 (1972). · Zbl 0249.58011
[489] K. Krzyzewski and W. Szlenk, ?On invariant measures of expanding differentiable mappings,? Stud. Math.,33, No. 1, 83?92 (1969). · Zbl 0176.00901
[490] I. Kubo, ?Infinite product of ergodic flows with pure point spectra,? Proc. Japan Acad.,43, No. 4, 258?262 (1967). · Zbl 0168.11605
[491] I. Kubo, ?Quasi-flows,? Nagoya Math. J.,35, 1?30 (1969). · Zbl 0209.08903
[492] I. Kubo, ?Quasi-flows. II. Additive functionals and TQ-systems,? Nagoya Math. J.,40, 39?66 (1970). · Zbl 0213.07602
[493] I. Kubo, ?Representations of quasi-flows with multidimensional parameter,? in: Proc. Int. Conf. Funct. Anal. and Relat. Topics, Tokyo, 1969, Tokyo (1970), pp. 405?413.
[494] I. Kubo, ?Ergodicity of the dynamical system of a particle on a domain with irregular walls,? Proc. Second Japan-USSR Symp. Prob. Lect. Notes Math. Vol. 330, Springer-Verlag, Berlin-Heidelberg-New York (1973), pp. 287?295. · Zbl 0284.28006
[495] I. Kubo, Ergodicity of the dynamical system of a particle on a domain with irregular walls,? Lect Notes Math.,330, 287?295 (1973). · Zbl 0284.28006
[496] I. Kubo, H. Murata, and H. Totoki, ?On the isomorphism problem for endomorphisms of Lebesgue spaces. I,? Publs. Res. Inst. Math. Sci.,9, No. 2, 285?296 (1974). · Zbl 0277.28005
[497] I. Kubo, H. Murata, and H. Totoki, ?On the isomorphism problem for endomorphisms of Lebesgue spaces. II,? Publs. REs. Inst. Math. Sci.,9, No. 2, 297?303 (1974). · Zbl 0277.28005
[498] I. Kubo, H. Murata, and H. Totoki, ?On the isomorphism problem for endomorphisms of Lebesgue spaces. III,? Publs. Res. Inst. Math. Sci.,9, No. 2, 305?317 (1974). · Zbl 0277.28005
[499] Yoshihiro Kubokawa, ?Finite and infinite invariant measures for a measurable transformation,? Ann. Inst. Statist. Math.,21, No. 1, 185?193 (1969). · Zbl 0184.21002
[500] Yoshihiro Kubokawa, ?Boundedness of a measurable transformation and a weakly wandering set,? Ann. Inst. Statist. Math.,21, No. 3, 537?540 (1969). · Zbl 0213.34102
[501] Yoshihiro Kubokawa, ?A general local ergodic theorem,? Proc. Jap. Acad.,48, No. 7, 461?465 (1972). · Zbl 0254.47013
[502] Yoshihiro Kubokawa, ?A pointwise ergodic theorem for positive bounded operator,? Proc. Jap. Acad.,48, No. 7, 458?460 (1972). · Zbl 0254.47012
[503] A. J. Kuntz, ?Groups of transformations without finite invariant measures have strong generators of size 2,? The Annals of Prob.,2, No. 1, 143?146 (1974). · Zbl 0276.28017
[504] A. J. Kuntz and D. H. Tucker, ?An extended form of the mean ergodic theorem,? Pacific J. Math.,27, No. 3, 539?545 (1968). · Zbl 0167.43901
[505] J. Kwiatkowski, ?Unitary operators with discrete spectrum induced by measure preserving transformations,? Repts. Math. Phys.,4, No. 3, 203?210 (1973). · Zbl 0301.28010
[506] P.-F. Lam, The Problem of Embedding a Homeomorphism in a Flow Subject to Differentiability Condition, Doct. Diss. Yale Univ. (1967), Dissert. Abstrs.,B28, No. 10, 4201 (1968).
[507] O. Lanford, ?Entropy and equilibrium states in classical statistical mechanics,? in: A. Lenard (editor), Statistical Mechanics and Mathematical Problems, Springer-Verlag, Lecture Notes Phys., Vol. 20, (1968). · Zbl 0174.28303
[508] K. Langee, ?A reciprocity theorem for ergodic actions,? Trans. Am. Math. Soc.,167, May, 59?78 (1972).
[509] A. Lasota and J. A. Yorke, ?On the existence of invariant measures for piecewise monotonic transformations,? Trans. Am. Math. Soc.,186, 481?488 (1973). · Zbl 0298.28015
[510] K. Lau and A. Zame, ?On weak mixing of cascades,? Math. Syst. Theory,6, No. 4, 307?311 (1973). · Zbl 0247.28010
[511] J. L. Leibowitz, ?Ergodic theory and statistical mechanics of nonequilibrium processes,? Lect. Notes Math.,322, 193?209 (1973).
[512] F. Ledgrappier, ?Mesures d’equilibre sur un reseau,? Commun. Math. Phys.,33, 119?128 (1973). · Zbl 0271.28010
[513] F. Ledgrappier et J.-C. Marcuard, Sur la methode du ?decoupage,? C.R. Acad. Sci.,274, No. 4, A362-A365 (1972).
[514] D. Leviatan and M. S. Ramanujan, ?A generalization of the mean ergodic theorem,? Stud. Math. (PRL),39, No. 2, 113?117 (1971). · Zbl 0212.08402
[515] F. Liberto, G. Gallavotti, and L. Russo, ?Markov processes, Bernoulli schemes, and Ising model,? Communs Math. Phys.,33, No. 4, 259?282 (1973). · Zbl 0333.60099
[516] M. Lin, ?Mixed ratio limit theorems for Markov processes,? Isr. J. Math.,8, No. 4, 357?366 (1970). · Zbl 0205.45401
[517] D. A. Lind, ?Ergodic automorphism of the infinite torus are Bernoulli,? Isr. J. Math.,17, No. 2, 162?168 (1974). · Zbl 0284.28007
[518] G. W. Mackey, ?Ergodicity in the theory of group representations,? in: Actes Congr. Int. Math., 1970, Vol. 2, Paris (1971), pp. 401?405.
[519] G. W. Mackey, ?Ergodic theory and its significance for statistical mechanics and probability theory,? Adv. Math.,12, No. 2, 176?268 (1974). · Zbl 0326.60001
[520] V. Mandrekar and M. Nadkarni, ?On ergodic quasi-invariant measures on the circle group,? J. Funct. Anal.,3, No. 2, 157?163 (1969). · Zbl 0174.31203
[521] V. Mandrekar and M. Nadkarni, ?Singular invariant measures on the line,? Stud. Math.,35, No. 1, 1?13 (1970). · Zbl 0205.07102
[522] A. Manning, ?There are no new Anosov diffeomorphisms on tori,? Am. J. Math.,96, No. 3, 422?429 (1974). · Zbl 0242.58003
[523] J. C. Marcuard, ?Entropie et proprietes spectrales des automorphismes admettant une approximation,? C.R. Acad. Sci.,272, No. 9, A608-A611 (1971). · Zbl 0205.07201
[524] J. C. Martin, ?Substitution minimal flows,? Am. J. Math.,93, No. 2, 503?526 (1971). · Zbl 0221.54039
[525] J. C. Martin, ?A class of zeta functions for ergodic theory,? J. Math. Anal. and Appl.,38, No. 3, 735?745 (1972). · Zbl 0201.56605
[526] G. Maruyama, ?Transformations of flows,? J. Math. Soc. Japan,18, No. 3, 303?330 (1966). · Zbl 0166.40402
[527] G. Maruyama, ?A singular flow with countable Lebesgue spectrum,? J. Math. Soc. Japan,19, No. 3, 359?365 (1967). · Zbl 0155.23901
[528] G. Maruyama, ?Some aspects of Ornstein’s theory of isomorphism problems in ergodic theory,? Publ. Res. Inst. Math. Sci.,7, No. 3, 511?539 (1972). · Zbl 0241.28013
[529] G. Maruyama, ?Applications of Ornstein’s theory to stationary processes,? Lect. Notes Math.,330, 304?309 (1973). · Zbl 0282.28010
[530] Mathematical Methods in Celestial Mechanics. Compl. Krichgraber Urs (Tagungsbericht Aug. 27?Sept. 2, 1972, No. 35). Math. Forschungsist Oberwolfach.
[531] R. McCabe and P. Shields, ?A class of Markov shifts which are Bernoulli shifts,? Adv. Math.,6, No. 3, 323?328 (1971). · Zbl 0223.28015
[532] S. A. MacGrath, ?Two ergodic theorems for convex combinations of commuting isometries,? Proc. Am. Math. Soc.,40, No. 1, 229?234 (1973).
[533] P. A. Meyer, ?Solutions de 1’equation de Poisson dans le cas recurrent,? Lect. Notes Math.,191, 251?269 (1971).
[534] P. A. Meyer, ?Travaux de H. Rost en theorie du balyage,? Lect. Notes Math.,191, 237?250 (1971).
[535] M. Metivier, ?Existence of an invariant measure and an Ornstein’s ergodic theorem,? Ann. Math. Stat.,40, No. 1, 79196 (1969). · Zbl 0214.17102
[536] H. Michel, ?Vollergodischer Automorphismen mit quasidiskreten Spektrum und Wurzeln jeder rationalen Ordnung,? Beitr. Anal. und Angew. Math. Berlin, 122?128 (1968). · Zbl 0179.35702
[537] H. Michel, ?Wurzeln vollergodischer Automorphismen mit quasidiskretem Spectrum. I,? Z. Wahrscheinlichkeitstheor. Verw. Geb.,9, 323?340 (1968). · Zbl 0162.19501
[538] H. Michel, ?Wurzeln vollergodischer Automorphismen mit quasidiskretem Spektrum. II,? Z. Wahrscheinlichkeitstheor. und Verw. Geb.,16, No. 4, 321?335 (1970). · Zbl 0192.40603
[539] P. Michel, ?Stricte ergodicité d’ensembles minimaux de substitution,? C.R. Acad. Sci.,A278, No. 11, 811?813 (1974). · Zbl 0274.60028
[540] M. Misiurewicz, ?On the expanding maps of compact manifold and local homeomorphisms of a circle,? Bull. Acad. Pol. Sci. Sér. Sci. Math. Astron., et Phys.,18, No. 12, 725?732 (1970). · Zbl 0205.54203
[541] M. Misiurewicz, ?Diffeomorphism without any measure with maximal entropy,? Bull. Acad. Pol. Sci. Sér. Sci. Math. Astron. et Phys.,21, No. 10, 903?910 (1973). · Zbl 0272.28013
[542] C. Moore, ?Ergodicity of flows on homogeneous spaces,? Am. J. Math.,88, No. 1, 154?178 (1966). · Zbl 0148.37902
[543] C. Moore, ?Invariant measures on product spaces,? in: Proc. Fifth Berkeley Smpos. Math. Statist. and Probabil., 1965?1966, Vol. 2, Part 2, Berkeley-Los Angeles (1967), pp. 447?459.
[544] J. Moser, Stable and Random Motions in Dynamical Systems. With Special Emphasis on Celestial Mechanics, Ann. Math. Studies, No. 77 (1973).
[545] P. S. Muhly, ?Function algebras and flows,? Acta Sci. Math.,35, 111?121 (1973).
[546] P. S. Muhly, ?Function algebras and flows. II,? Ark. Mat.,11, No. 2, 203?213 (1973). · Zbl 0275.46046
[547] B. Nagel, ?Some results in noncommutative ergodic theory,? Communs. Math. Phys.,26, No. 3, 247?258 (1972). · Zbl 0239.46064
[548] B. Nagel and M. Wolff, ?Abstract dynamical systems with an application to operators with discrete spectrum,? Arch. Math.,23, No. 2, 170?176 (1972). · Zbl 0211.16203
[549] Y. Nakamura, ?A representation of entropy preserving isomorphisms between lattices of finite partitions,? Proc. Jap. Acad.,48, No. 2, 116?120 (1972). · Zbl 0264.94018
[550] S. Natarajan, ?A category theorem in ergodic theory,? Teor. Veroyatn. Ee Prilozhen.,17, No. 2, 370?372 (1972).
[551] K. Nawrotzki, ?Mischungcigenschaften stationärer unbegrenzt teilbarer zufälliger Distribution,? Wiss. Z. Friedrich-Schiller Univ. Jena, Math. Naturwiss. Reihe,18, No. 2, 397?408 (1969).
[552] J. Neveu, ?Existence of bounded invariant measures in ergodic theory,? in: Proc. Fifth Berkeley Sympos. Math. Statist. and Probabil., 1965?1966, Vol. 2, Part 2, Berkeley-Los Angeles (1967), pp. 461?472.
[553] J. Neveu, ?Une demonstration simplifée et une extension de la formule d’Abramov sur l’entropie des transformations induites,? Z. Wahrscheinlichkeitstheor. und Verw. Geb.,13, No. 2, 135?140 (1969). · Zbl 0211.20603
[554] J. Neveu, ?Sur les suites de Toeplitz,? Z. Wahrscheinlichkeitstheor. und Verw. Geb.,13, 132?134 (1969). · Zbl 0195.52801
[555] J. Neveu, ?Temps d’arret d’un systeme dynamique,? Z. Wahrscheinlichkeitstheor. und Verw. Geb.,13, 81?94 (1969). · Zbl 0181.20001
[556] S. Newhouse, ?On codimension one Anosov diffeomorphisms,? Am. J. Math.,92, 761?770 (1970). · Zbl 0204.56901
[557] D. Newton, ?Note on Kolmogorov automorphisms,? J. London Math. Soc.,43, No. 3, 457?458 (1968). · Zbl 0172.07302
[558] D. Newton, ?On a principal factor system of a normal dynamical system,? J. London Math. Soc.,43, No. 2, 275?279 (1968). · Zbl 0169.20601
[559] D. Newton, ?On Gaussian processes with simple spectrum,? Z. Wahrscheinlichkeitstheor. und. Verw. Geb.,5, 207?209 (1966). · Zbl 0142.13804
[560] D. Newton, ?On the entropy of certain classes of skew-product transformations,? Proc. Am. Math. Soc.,21, No. 3, 722?726 (1969). · Zbl 0174.09201
[561] D. Newton, ?On sequence entropy. I,? Math. Syst. Theor.,4, No. 2, 119?125 (1970). · Zbl 0189.05704
[562] D. Newton, ?On sequence entropy. II,? Math. Syst. Theor.,4, No. 2, 126?128 (1970). · Zbl 0189.05704
[563] D. Newton, ?On autormorphisms with no mixing factors,? J. London Math. Soc.,8, No. 4, 657?663 (1974). · Zbl 0294.28010
[564] D. Newton and W. Parry, ?On a factor automorphism of a normal dynamical system,? Ann. Math. Statist.,37, No. 6, 1528?1533 (1966). · Zbl 0178.52703
[565] T. Niwa, ?On the classical flows with discrete spectra,? Proc. Japan. Acad.,45, No. 1, 14?16 (1969). · Zbl 0179.53101
[566] T. Niwa, ?On the classical flows with discrete spectra,? in: Proc. Int. Conf. Funct. Anal. and Relat. Topics, Tokyo, 1969, Tokyo (1970), pp. 400?404. · Zbl 0179.53101
[567] H. Nomoto, ?Finite-dimensional approximations to some flows on the projective limit space of spheres. II,? Nagoya Math. J.,29, 127?135 (1967). · Zbl 0166.13702
[568] H. Nomoto, ?On a class of metrical automorphisms on Gaussian measure space,? Nagoya Math. J.,38, 21?25 (1970). · Zbl 0212.45802
[569] V. Norton and T. O’Brien, ?Anosov flows and expansiveness,? Proc. Am. Math. Soc.,40, No. 2, 625?628 (1973). · Zbl 0267.58011
[570] Y. Ogata, ?On the simple ?-automorphisms and its transverse,? Sci. Repts. Tekyo Kyoiku Daigaku Sec. A,12, 313?328 (1973).
[571] D. S. Ornstein, ?On invariant measures,? Bull. Am. Math. Soc.,66, No. 4, 297?300 (1960). · Zbl 0154.30502
[572] D. S. Ornstein, ?Automorphism which commute only with its powers,? in: Proc. Fifth Berkeley Sympos. Math. Statist. and Probabil., Berkeley-Los Angeles (1967), pp. 335?360.
[573] D. S. Ornstein, ?Bernoulli shifts with the same entropy are isomorphic,? Advances Math.,4, No. 3, 337?352 (1970). · Zbl 0197.33502
[574] D. S. Ornstein, ?Two Bernoulli shifts with infinite entropy are isomorphic,? Advances Math.,5, No. 3, 339?348 (1970). · Zbl 0227.28014
[575] D. S. Ornstein, ?Factors of Bernoulli shifts are Bernoulli shifts,? Adv. Math.,5, No. 3, 349?364 (1970). · Zbl 0227.28015
[576] D. S. Ornstein, ?Imbedding Bernoulli shifts in flows,? Lect. Notes Math.,160, 178?218 (1970). · Zbl 0227.28013
[577] D. S. Ornstein, ?A remark on the Birkhoff ergodic theorem,? III. J. Math.,15, No. 1, 77?79 (1971). · Zbl 0212.40102
[578] D. S. Ornstein, ?Some new results in the Kolmogorov-Sinai theory of entropy and ergodic theory,? Bull. Am. Math. Soc.,77, No. 6, 878?890 (1971). · Zbl 0269.60032
[579] D. S. Ornstein, ?Measure-preserving transformations and random processes,? Am. Math. Mon.,78, No. 8, 833?840 (1971). · Zbl 0233.28019
[580] D. S. Ornstein, ?Entropy is enough to classify Bernoulli shifts but not K-automorphisms,? in: Actes Congr. Int. Math., 1970, Vol. 2, Paris (1971), pp. 571?575.
[581] D. S. Ornstein, ?An example of a Kolmogorov automorphism that is not a Bernoulli shift,? Adv. Math.,10, No. 1, 49?62 (1973). · Zbl 0245.28011
[582] D. S. Ornstein, ?A K-automorphism with no square root and Pinsker’s conjecture,? Adv. Math.,10, No. 1, 89?102 (1973). · Zbl 0248.28010
[583] D. S. Ornstein, ?A mixing transformation for which Pinsker’s conjecture fails,? Adv. Math.,10, No. 1, 103?123 (1973). · Zbl 0248.28011
[584] D. S. Ornstein, Ergodic Theory, Randomness and Dynamical Systems, Yale Mathematical Monographs, Yale Univ. Press (1974).
[585] D. S. Ornstein and P. C. Shields, ?Mixing Markov shifts of kernel type are Bernoulli,? Adv. Math.,10, No. 1, 143?146 (1973). · Zbl 0252.28009
[586] D. S. Ornstein and P. C. Shields, ?An uncountable family of K-automorphisms,? Adv. Math.,10, No. 1, 63?88 (1973). · Zbl 0251.28004
[587] D. S. Ornstein and L. Sucheston, ?On the existence of a ?-finite invariant measure under a generalized Harris condition,? Lect. Notes Math.,160, 219?233 (1970). · Zbl 0214.17101
[588] D. S. Ornstein and B. Weiss, ?Geodesic flows are Bernoullian,? Isr. J. Math.,14, No. 2, 184?198 (1973). · Zbl 0256.58006
[589] M. Osikawa, ?Ergodic measure preserving transformations and equivalence in a local sense,? Mem. Fac. Sci. Kyushu Univ. A.,26, No. 2, 193?199 (1972). · Zbl 0247.28008
[590] M. Osikawa and T. Hamashi, ?On zero type and positive type transformations with infinite invariant measures,? Mem. Fac. Sci. Kyushu Univ.,A25, No. 2, 280?295 (1971).
[591] M. Osikawa and T. Hamashi, ?Topology entropy of a nonirreducible intrinsic Markov shift,? Mem. Fac. Sci. Kyushu Univ.,A25, No. 2, 296?299 (1971).
[592] J. C. Oxtoby, ?Approximations by a measure-preserving homeomorphism,? Lect. Notes Math.,318, 206?217 (1973). · Zbl 0255.28012
[593] F. Papangelou, ?The Ambrose-Kakutani theorem and the Poisson process,? Lect. Notes Math.,160, 234?240 (1970). · Zbl 0267.60061
[594] W. Parry, ?Intrinsic Markov chains,? Trans. Am. Math. Soc.,112, No. 1, 55?65 (1964). · Zbl 0127.35301
[595] W. Parry, ?Compact Abelian group extensions of discrete dynamical systems,? Z. Wahrscheinlichkeitstheor. und Verw. Geb.,13, No. 2, 95?113 (1969). · Zbl 0184.26901
[596] W. Parry, ?Ergodic properties of affine transformations and flows on nilmanifolds,? Am. J. Math.,51, No. 3, 757?771 (1969). · Zbl 0183.51503
[597] W. Parry, Entropy and Generators in Ergodic Theory, Benjamin, New York (1969). · Zbl 0175.34001
[598] W. Parry, ?Dynamical systems on nilmanifolds,? Bull. London Math. Soc.,2, No. 1, 37?40 (1970). · Zbl 0194.05601
[599] W. Parry, ?Spectral analysis of G-extensions of dynamical systems,? Topology,9, No. 3, 217?224 (1970).
[600] W. Parry, ?Metric classification of ergodic nilflows and unipotent affines,? Am. J. Math.,93, No. 3, 819?828 (1971). · Zbl 0222.22010
[601] W. Parry, ?Ergodic theory of G-spaces,? in: Actes Congr. Int. Math., 1970, Vol. 2, Paris (1971), pp. 921?924.
[602] W. Parry, ?Cocycles and velocity changes,? J. London Math. Soc.,5, No. 3, 511?516 (1972). · Zbl 0242.28013
[603] W. Parry, ?Dynamical representations in nilmanifolds,? Comps. Math.,26, No. 2, 159?174 (1973). · Zbl 0256.22013
[604] W. Parry, ?Notes on a posthumous paper by F. Hahn,? Isr. J. Math.,16, No. 1, 38?45 (1973). · Zbl 0272.54034
[605] W. Parry and P. Walter, ?Minimal skew-product homeomorphisms and coalescence,? Compos. Math.,22, No. 3, 283?288 (1970).
[606] W. Parry and P. Walter, ?Endomorphisms of a Lebesgue space,? Bull. Am. Math. Soc.,78, No. 2, 272?276 (1972). · Zbl 0232.28013
[607] O. Pazzis, Time Evolution Problem in Classical Statistical Mechanics and the Wind Tree Model, Cargue Lect. in Physics, Vol. 4, 1970.
[608] O. Pazzis, ?Ergodic properties of a semi-infinite hard rods system,? Comm. Math. Phys.,22, No. 2, 121?132 (1971). · Zbl 0236.60071
[609] R. Peleg, ?Weak disjointness of transformation groups,? Proc. Am. Math. Soc.,33, No. 1, 165?170 (1972). · Zbl 0237.54031
[610] K. Petersen, ?Spectra of induced transformation,? Lect. Notes Math.,318, 226?230 (1973). · Zbl 0255.28013
[611] J. F. Plante, ?Anosov flows,? Am. J. Math.,94, No. 3, 729?754 (1972). · Zbl 0257.58007
[612] R. Potacký, ?About the isomrophism of Bernoulli schemes,? Acta Fac. Rerum Natur. Univ. Comen. Math.,26, 33?38 (1972).
[613] O. Pugh and M. Shub, ?Ergodic elements of ergodic actions,? Compos. Math.,23, No. 1, 115?122 (1971). · Zbl 0225.28009
[614] C. Pugh and M. Shub, ?Ergodicity of Anosov actions,? Invent. Math.,15, No. 1, 1?23 (1972). · Zbl 0236.58007
[615] M. Rajagopalan and B. Schreiber, ?Ergodic automorphisms and affine transformations,? Proc. Jap. Acad.,46, No. 7, 633?636 (1970). · Zbl 0222.22009
[616] M. Rajagopalan and B. Schreiber, ?Ergodic automorphisms and affine transformations of locally compact groups,? Pacific J. Math.,38, No. 1, 167?176 (1971). · Zbl 0213.31302
[617] A. Ramsay, ?Virtual groups and group actions,? Adv. Math.,6, No. 3, 253?322 (1971). · Zbl 0216.14902
[618] M. Ratner, ?The central limit theorem for geodesic flows on n-dimensional manifolds of negative curvature,? Isr. J. Math.,16, No. 2, 181?197 (1973). · Zbl 0283.58010
[619] M. Ratner, ?Markov partitions for Anosov flows on n-dimensional manifolds,? Isr. J. Math.,15, No. 1, 92?114 (1973). · Zbl 0269.58010
[620] M. Ratner, ?Anosov flows with Gibbs measures are also Bernoullian,? Isr. J. Math.,17, No. 4, 380?391 (1974). · Zbl 0304.28011
[621] A. Regnier, ?Théorèmes erdogiques individuels purement topologiques,? Ann. Inst. H. Poincaré,B6, No. 3, 271?280 (1970). · Zbl 0209.54902
[622] P. F. Renaud, ?General ergodic theorems for locally compact groups,? Am. J. Math.,93, No. 1, 52?64 (1971). · Zbl 0215.40701
[623] P. Révész, ?On the Random Ergodic Theorems,? Mat. Inst. Aarhus Univ. Aarhus (1961).
[624] J. B. Robertson, ?A spectral representation of the states of measure preserving transformation,? Z. Wahrascheinlichkeitstheor. und Verw. Geb.,27, No. 3, 185?194 (1973). · Zbl 0281.60037
[625] J. B. Robertson, ?The mixing properties of certain processes related to Markov chains,? Math. Syst. Theory,7, No. 1, 39?43 (1973). · Zbl 0256.60054
[626] D. Robinson and D. Ruelle, ?Mean entropy of states in classical statistical mechanics,? Comm. Math. Phys.,5, 228?300 (1967). · Zbl 0144.48205
[627] F. Rublic, ?Abstract formulation of the individual ergodic theorem,? Mat. ?as.,23, No. 3, 199?208 (1973).
[628] S. M. Rudolfer, ?On characterizations of mixing properties of measure-preserving transformations,? Math. Syst. Theory,3, No. 1, 86?94 (1969). · Zbl 0175.16602
[629] S. M. Rudolfer, ?Some metric invariants for Markov shifts,? Z. Wahrscheinlichkeitstheor. und Verw. Geb.,15, No. 3, 202?207 (1970). · Zbl 0207.48704
[630] S. M. Rudolfer, ?Ergodic properties of linear fractional transformations mod one,? Proc. London Math. Soc.,23, No. 3, 515?531 (1971). · Zbl 0228.10030
[631] S. M. Rudolfer, ?The independence properties of certain number-theoretic endomorphisms,? in: Proc. Sympos. on Topology, Dynamics and Ergodic Theory, Univ. of Kentucky, Lexington (1971), pp. 68?69. · Zbl 0228.10030
[632] S. M. Rudolfer and K. M. Wilkinson, ?A number-theoretic class of weak Bernoulli transformations,? Math. Syst. Theory,7, No. 1, 14?24 (1973). · Zbl 0258.10031
[633] D. Ruelle, ?Statistical mechanics of a one-dimensional lattice gas,? Commun. Math. Phys.,9, 267?278 (1968). · Zbl 0165.29102
[634] D. Ruelle, ?Statistical mechanics on a compact set with Z? action satisfying expansiveness and specification,? Bull. Amer. Math. Soc.,78, No. 6, 988?991 (1972). · Zbl 0255.28015
[635] D. Ruelle, ?Statistical mechanics on a compact set with Z? action satisfying expansiveness and specification,? Trans. Amer. Math. Soc.,185, 237?253 (1973). · Zbl 0278.28012
[636] D. Ruelle, ?A measure associated with axiom A attractors,? Preprint (1970). · Zbl 0355.58010
[637] U. Sachdeva, ?On category of mixing in infinite measure spaces,? Math. Syst. Theory,5, No. 4, 319?330 (1971). · Zbl 0226.28008
[638] R. Sacksteder, ?Strongly mixing transformations,? in: Proc. Symp. in Pure Math., Global Analysis, Vol. 14, (1970), pp. 245?252. · Zbl 0219.28012
[639] A. Salesky, ?On induced transformations of Bernoulli shifts,? Math. Syst. Theory,7, No. 1, 83?96 (1973). · Zbl 0256.28012
[640] Ryotaro Sato, ?Notes on generalized commuting properties of skew product transformations,? Proc. Jap. Acad.,45, No. 5, 368?373 (1970). · Zbl 0184.08101
[641] Ryotaro Sato, ?Continous affine transformations of locally compact disconnected groups,? Proc. Jap. Acad.,46, No. 2, 143?146 (1970). · Zbl 0203.44002
[642] Ryotaro Sato, ?On locally compact Abelian groups with dense orbits under continuous affine transformations,? Proc. Jap. Acad.,46, No. 2, 147?150 (1970). · Zbl 0203.44003
[643] Ryotaro Sato, ?Properties of ergodic affine transformations of locally compact groups,? I,? Proc. Jap. Acad.,46, No. 3, 231?235 (1970). · Zbl 0203.44004
[644] Ryotaro Sato, ?Properties of ergodic affine transformations of locally compact groups. II,? Proc. Jap. Acad.,46, No. 3, 236?238 (1970). · Zbl 0231.22010
[645] Ryotaro Sato, ?On the individual ergodic theorem for positive operators,? Proc. Am. Math. Soc.,36, No. 2, 456?458 (1972). · Zbl 0262.47005
[646] Ryotaro Sato, ?On the individual ergodic theorem for subsequences,? Stud. Math. (PRL),45, No. 1, 31?35 (1973). · Zbl 0262.47005
[647] Ryotaro Sato, ?On a general ratio ergodic theorem with weighted averages,? Proc. Am. Math. Soc.,35, No. 1, 177?178 (1972). · Zbl 0255.47013
[648] Ryotaro Sato, ?Local ergodic properties of Lp-operator semigroups,? Comment. Math. Univ. Carol.,14, No. 1, 177?181 (1973). · Zbl 0255.47014
[649] Ryotaro Sato, ?On a decomposition of transformations in infinite measure spaces,? Pacific J. Math.,44, No. 2, 733?738 (1973). · Zbl 0252.28010
[650] Ryotaro Sato, ?Abel-ergodic theorems for subsequences,? Pacific J. Math.,47, No. 1, 233?242 (1973). · Zbl 0263.47004
[651] Ryotaro Sato, ?Ergodic theorems for semi-groups inL p , 1<p<?,? Tohoku Math. J.,26, No. 1, 73?76 (1974). · Zbl 0278.28009
[652] B. Schmitt, ?Théoréme ergodique ponctuel pour les suites uniformes,? Ann. Inst. H. Poincaré,B8, No. 4, 387?394 (1972) (1973).
[653] C. Sobrdone, ?Sulle misure invariant,? Ric. Mat.,21, No. 2, 244?251 (1972).
[654] T. Schwartzbauer, ?Automorphisms that admit an approximation by periodic transformations,? Z. Wahrscheinlichkeitstheor. und Verw. Geb.,15, No. 3, 239?248 (1970). · Zbl 0191.34204
[655] T. Schwartzbauer, ?A general method for approximating measure preserving transformations,? Proc. Am. Math. Soc.,24, No. 3, 643?648 (1970). · Zbl 0197.04002
[656] T. Schwartzbauer, ?Entropy and approximation of measure-preserving transformations,? Pacific J. Math.,43, No. 3, 753?764 (1972). · Zbl 0259.28012
[657] T. Schwartzbauer, ?Approximation of measure preserving transformations,? Math. Syst. Theory,6, No. 4, 312?323 (1973). · Zbl 0265.28009
[658] M. Sears, ?The automorphism of the shift dynamical system are relatively sparse,? Math. Syst. Theory,5, No. 3, 228?231 (1971). · Zbl 0221.54040
[659] P. Shields, ?Cutting and independent stacking of intervals,? Math. Syst. Theory,7, No. 1, 1?4 (1973). · Zbl 0255.28017
[660] T. Shimano, ?Random recurrence time in ergodic theory,? Tohoku Math. J.,23, No. 2, 273?287 (1971). · Zbl 0226.60056
[661] I. Shikawa, ?Ergodic properties of piecewise linear transformations,? Proc. Jap. Acad.46, No. 10, 1122?1125 (1970). · Zbl 0228.28014
[662] H. Shirakawa, ?The construction of a special flow for a geodesic flow on a surface of constant negative curvature,? Sci. Repts. Tokyo Kyoiku Daigaku,A11, No. 286?312, 201?203 (1972). · Zbl 0277.58005
[663] H. Shirakawa, ?A proof of strongly mixing property of a horocycle flow,? Sci. Repts. Tokyo Keoiku Daigaku,A11, No. 286?312, 204?207 (1972). · Zbl 0289.58009
[664] M. Shub, ?Endomorphisms of compact differentiable manifolds,? Am. J. Math.,91 175?199 (1969). · Zbl 0201.56305
[665] M. Shub, ?Dynamical systems filtrations, and entropy,? Bull. Am. Math. Soc.,80, No. 1, 27?41 (1974). · Zbl 0305.58014
[666] K. Sigmund, ?Generic properties of invariant measures for axiom A-diffeomorphisms,? Invent. Math.,11, No. 2, 99?109 (1970). · Zbl 0193.35502
[667] K. Sigmund, ?Ergodic averages for axiom A diffeomorphisms,? Z. Wahrscheinlichkeitstheor. und Verw. Geb.,20, No. 4, 319?324 (1971). · Zbl 0214.15901
[668] K. Sigmund, ?On the space of invariant measures for hyperbolic flows,? Am. J. Math.,94, No. 1, 31?37 (1972). · Zbl 0242.28014
[669] K. Sigmund, ?On mixing measures for axiom A diffeomorphisms,? Proc. Am. Math. Soc.,36, No. 2, 497?504 (1972). · Zbl 0225.28013
[670] Ya. G. Sinai (J. G. Sinai), ?Wyklady o uktadach dynamicznych cze?c I,? Wydow. Univ. Wars. Warszawn., No. 1?3 (1969).
[671] Ya. G. Sinai (J. G. Sinai), ?Measures invariantes desy-systemes,? in: Actes Congrs Int. Math., 1970, Vol. 2, (Paris) (1971), pp. 929?940.
[672] Ya. G. Sinai (J. G. Sinai), Ergodic Theory. The Boltzmann Equation, Springer-Verlag, Wien-New York (1973), pp. 575?608. · Zbl 0255.28016
[673] Ya. G. Sinai (J. G. Sinai), Theory of Dynamical Systems. Part I, Lecture Notes Ser. Mat. Inst. Aarhus Univ. (1970), No. 23. · Zbl 0221.28006
[674] R. Sine, ?A mean ergodic theorem,? Proc. Am. Math. Soc.,24, No. 3, 438?439 (1970). · Zbl 0191.42204
[675] S. Smale, ?Differential dynamical systems,? Bull. Am. Math. Soc.,73, 747?817 (1967). · Zbl 0202.55202
[676] S. Smale, ?Diffeomorphisms with many periodic points,? in: Differential and Combinatorial Topology, Princeton Univ. Press (1965), pp. 63?80. · Zbl 0142.41103
[677] M. Smorodinsky, ?Singular measures and Hausdorff measures,? Isr. J. Math.,7, No. 3, 203?206 (1969). · Zbl 0186.49801
[678] M. Smorodinsky, ?Ergodic theory, entropy,? Lect. Notes Math.,214 (1971). · Zbl 0213.07502
[679] M. Smorodinsky, ?A partition on a Bernoulli shift which is not weakly Bernoulli,? Math. Syst. Theor,5, No. 3, 201?203 (1971). · Zbl 0226.60066
[680] M. Smorodinsky, ?On Ornstein’s isomorphism theorem for Bernoulli shifts,? Adv. Math.,9, No. 1, 1?9 (1970). · Zbl 0238.28010
[681] M. Smorodinsky, ?Probabilistic properties of number expansions,? Var. Publs. Ser. Mat. Inst. Aarhus Univ., No. 21, 191?196 (1972). · Zbl 0245.10040
[682] M. Smorodinsky, ??-automorphisms are Bernoulli,? Acta Math. Acad. Sci. Hung.,24, Nos. 3?4, 273?278 (1973). · Zbl 0268.28007
[683] J. R. Sorenson, Existence of Measures that Are Invariant Under a Semigroup of Transformations, Doct. Diss. Purdue Univ., 1966, Dissert. Abstrs.,B27, No. 11, 4036 (1967).
[684] G. H. Stein, ?Entropy and density,? Proc. Am. Math. Soc.,28, No. 2, 505?508 (1971).
[685] A. M. Stepin, ?Les spectres des systèmes dynamiques,? in: Actes Congr. Int. Math., 1970, Vol. 2, Paris (1971), pp. 941?946.
[686] J. M. Strelcyn, ?Stricte ergodicity des flots speciaux,? C.R. Acad. Sci.,271, No. 18, A903-A905 (1970). · Zbl 0201.56606
[687] W. Szlenk, ?Some spectral aspects of topological dynamical systems,? Bull. Acad. Pol. Sci. Ser. Sci. Math., Astron. et Phys.,21, No. 4, 313?316 (1973). · Zbl 0257.54041
[688] W. Takahashi, ?Invariant functions for amenable semigroups of positive contractions on L1,? Kodai Math. Semin. Repts.,23, No. 2, 131?143 (1971). · Zbl 0219.47035
[689] W. Takahashi, ?Ergodic theorems for amenable semigroups of positive contractions of L’,? Sci. Repts. Yokohama Nat. Univ., Sec. 1, No. 19, 5?11 (1972).
[690] Ya. Takahshi, ?Isomorphisms of ?-automorphisms to Markov automrophisms,? Osaka J. Math.,10, 175?184 (1973).
[691] Y. Takahashi, ?Markov semigroups with simplest intereaction. I,? Proc. Jap. Acad.,47, Suppl. No. 2, 974?978 (1971). · Zbl 0276.60074
[692] Y. Takahashi, ??-transformations and symbolic dynamics,? Lect. Notes Math.,330, 455?464 (1973). · Zbl 0264.93039
[693] T. R. Terrel, ?Local ergodic theorems for N-parameter semigroups of operators,? Lect. Notes Math.,160, 262?278 (1970).
[694] T. R. Terrel, ?The local ergodic theorem and semigroups of nonpositive operators,? J. Funct. Anal.,10, No. 4, 424?429 (1972). · Zbl 0236.47043
[695] T. R. Terrel, ?A ratio ergodic theorem for operator semigroups,? Boll. Unione Mat. Ital.,6, No. 2, 175?180 (1972).
[696] R. K. Thomas, ?Metric properties of transformations of G-spaces,? Trans. Am. Math. Soc.,160, 103?117 (1971).
[697] R. K. Thomas, ?The addition theorem for the entropy of transformations of G-spaces,? Trans. Am. Math. Soc.,160, 119?130 (1971).
[698] R. K. Thomas, ?On affine transformations of locally compact groups,? J. London Math. Soc.,4, No. 4, 599?610 (1972). · Zbl 0244.22006
[699] J.-P. Thouvenot, ?Convergence en moyenne de l’information pour l’action de Z2,? Z. Wahrscheinlichkeitstheor. und Verw. Geb.,24, No. 2, 135?137 (1972). · Zbl 0266.60037
[700] H. Totoki, ?Time changes of flows,? Mem. Fac. Sci. Kyushu Univ.,A20, No. 1, 27?55 (1966). · Zbl 0185.39103
[701] H. Totoki, ?On a class of special flows,? Z. Wahrscheinlichkeitstheor. und Verw. Geb.,15, No. 2, 157?167 (1970). · Zbl 0193.45903
[702] H. Totoki, Ergodic Theory, Lect. Notes Sec. Mat. Inst. Aarhus Univ., No. 14 (1970).
[703] S. Tsurumi, ?On random ergodic theorems for a random quasisemigroup of linear contractions,? Proc. Jap. Acad.,48, No. 3, 149?152 (1972). · Zbl 0245.28013
[704] W. A. Veech, ?Strict ergodicity in zero-dimensional dynamical systems and the Kronecker-Weyl theorem mod 2,? Trans. Am. Math. Soc.,140, June, 1?33 (1969). · Zbl 0201.05601
[705] W. A. Veech, ?Properties of minimal functions on Abelian groups,? Am. J. Math.,91, No. 2, 415?440 (1969). · Zbl 0206.42804
[706] W. A. Veech, ?A fixed point theorem-free approach to weak almost periodicity,? Trans. Am. Math. Soc.,177, March, 353?362 (1973).
[707] P. Walters, ?On the relationship between zero entropy and quasi-discrete spectrum for affine transformations,? Proc. Am Math. Soc.,18, No. 4, 661?667 (1967). · Zbl 0177.42001
[708] P. Walters, ?Roots on n?1 measure-preserving transformations,? J. London Math. Soc.,44, No. 1, 7?14 (1969). · Zbl 0159.07701
[709] P. Walterns, ?Topological conjugacy of affine transformations of compact Abelian groups,? Trans. Am. Math. Soc.,140, 95?107 (1969).
[710] P. Walters, ?Conjugacy properties of affine transformations of nilmanifolds,? Math. Syst. Theory,4, No. 4, 327?333 (1970). · Zbl 0207.22801
[711] P. Walters, ?Some invariant ?-algebras for measure preserving transformations,? Trans. Am. Math. Soc.,163, 357?368 (1972). · Zbl 0227.28011
[712] P. Walters, ?Some results on the classification of noninvertible measure preserving transformations,? Lect. Notes Math.,318, 266?276 (1973). · Zbl 0257.28011
[713] P. Walters, ?Some transformations having a unique measure with maximal entropy,? Proc. London Math. Soc.,28, No. 3, 500?516 (1974). · Zbl 0319.28011
[714] P. Walters, ?A variational principle for the pressure of continuous transformations,? Am. J. Math. (1975).
[715] M. S. Walterman, ?Some ergodic properties of multidimensional F-expansions,? Z. Wahrscheinlichkeitstheor. und Verw. Geb.,16, No. 2, 77?103 (1970). · Zbl 0199.37102
[716] M. S. Walterman, ?Sur la reciproque d’un résultat de Furstenberg,? C.R. Acad. Sci.,272, No. 1, A56-A58 (1970).
[717] B. Weiss, ?Intrisically ergodic systems,? Bull. Am. Math. Soc.,76, No. 6, 1266?1269 (1970). · Zbl 0218.28011
[718] B. Weiss, ?Topological transitivity and ergodic measures,? Math. Syst. Theory,5, No. 1, 71?75 (1971). · Zbl 0212.40103
[719] B. Weiss, ?The isomorphism problem in ergodic theory,? Bull. Am. Math. Soc.,78, No. 5, 668?684 (1972). · Zbl 0255.28014
[720] B. Weiss, ?Groups of measure preserving transformations,? Lect. Notes Math.,318, 277?280 (1973). · Zbl 0267.28009
[721] B. Weiss, ?Subshifts of finite type and sofic systems,? Monatsh. Math.,77, No. 5, 462?474 (1973). · Zbl 0285.28021
[722] M. D. Weiss, ?Topological entropy of Chebyshev polynomials and related real mappings,? J. Math. Anal. and Appl.,43, No. 3, 816?822 (1973). · Zbl 0272.54035
[723] K. E. Westerbeck and Ta-Sun Wu, ?The equicontinuous structure relation for ergodic Abelian transformation groups,? Ill. J. Math.,17, No. 3, 421?441 (1973). · Zbl 0256.54023
[724] Y. Yokoi, ?Dynamical systems with ergodic partitions,? Proc. Jap. Acad.,47, No. 2, 160?162 (1971). · Zbl 0232.28016
[725] L. Zsido, ?Sperante conditionate si teorema lui Sinai,? Studii si Cercetari Mat.,20, 1045?1111 (1968).
[726] L. Zsido, ?Sur les processus fortement stationaires ergodiques,? C. R. Acad. Sci.,267, 169?170 (1968).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.