×

zbMATH — the first resource for mathematics

Two approximation problems in function spaces. (English) Zbl 0399.46023

MSC:
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
35J30 Higher-order elliptic equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Adams, D. R., On the existence of capacitary strong type estimates inR n,Ark. mat. 14 (1976), 125–140. · Zbl 0325.31008
[2] Adams, D. R., Meyers, N. G., Thinness and Wiener criteria for non-linear potentials,Indiana Univ. Math. J. 22 (1972), 169–197. · Zbl 0244.31012
[3] Adams, D. R., Meyers, N. G., Bessel potentials. Inclusion relations among classes of exceptional sets,Indiana Univ. Math. J. 22 (1973), 873–905. · Zbl 0285.31007
[4] Adams, D. R., Polking, J. C. The equivalence of two definitions of capacity,Proc. Amer. Math. Soc. 37 (1973), 529–534. · Zbl 0251.31005
[5] Aronszajn, N., Smith, K. T., Theory of Bessel potentials. Part I,Ann. Inst. Fourier 11 (1961), 385–475. · Zbl 0102.32401
[6] Bagby, T., Quasi topologies and rational approximation,J. Functional Analysis 10 (1972), 259–268. · Zbl 0266.30024
[7] Bagby, T., Ziemer, W. P., Pointwise differentiability and absolute continuity,Trans. Amer. Math. Soc. 191 (1974), 129–148. · Zbl 0295.26013
[8] Bers, L., An approximation theorem,J. Analyse Math. 14 (1965), 1–4. · Zbl 0134.05304
[9] Beurling, A., Deny, J., Dirichlet spaces,Proc. National Acad. Sci. 45 (1959), 208–215. · Zbl 0089.08201
[10] Burenkov, V. I., Approximation of functions in the spaceW p r ({\(\Theta\)}) by compactly supported functions for an arbitrary open set {\(\omega\)},Trudy Mat. Inst. im. V. A. Steklova AN SSSR,131 (1974), 51–63.
[11] Calderón, A. P., Lebesgue spaces of differentiable functions and distributions,Proc. Symp. Pure Math. 4 (1961), 33–49. · Zbl 0195.41103
[12] Calderón, A. P., Zygmund, A., Local properties of solutions of elliptic partial differential equations,Studia Math. 20 (1961), 171–225. · Zbl 0099.30103
[13] Calderón, C. P., Fabes, E. B., Rivière, N. M., Maximal smoothing operators,Indiana Univ. Math. J. 23 (1974), 889–898. · Zbl 0313.46028
[14] Deny, J., Systèmes totaux de fonctions harmoniques,Ann. Inst. Fourier 1 (1965), 103–113.
[15] Deny, J., Sur la convergence de certaines intégrales de la théorie du potentiel,Arch. der Math. 5 (1954), 367–370. · Zbl 0057.33104
[16] Deny, J. Méthodes hilbertiennes en théorie du potentiel,Potential Theory (C. I. M. E., I. Ciclo, Stresa 1969), 121–201, Ed. Cremonese, Rome 1970.
[17] Fernström, C., Polking, J. C., Bounded point evaluations and approximation inL p by solutions of elliptic partial differential equations,J. Functional Analysis, to appear. · Zbl 0396.35037
[18] Fuglede, B., Applications du théorème minimax à l’étude de diverses capacités,C. R. Acad. Sci. Paris. Sér. A266 (1968), 921–923. · Zbl 0159.40801
[19] Havin, V. P., Approximation in the mean by analytic functions,Dokl. Akad. Nauk SSSR 178 (1968), 1025–1028.
[20] Hedberg, L. I., Approximation in the mean by analytic functions,Trans. Amer. Math. Soc. 163 (1972), 157–171). · Zbl 0236.30045
[21] Hedberg, L. I., Non-linear potentials and approximation in the mean by analytic functions,Math. Z. 129 (1972), 299–319. · Zbl 0243.31014
[22] Hedberg, L. I., On certain convolution inequalities,Proc. Amer. Math. Soc. 36 (1972), 505–510. · Zbl 0283.26003
[23] Hedberg, L. I., Approximation in the mean by solutions of elliptic equations,Duke Math. J. 40 (1973), 9–16. · Zbl 0283.35035
[24] Lions, J. L., Magenes, E., Problèmes aux limites non homogènes IV.Ann. Scuola Norm. Sup. Pisa (3)15 (1961), 311–326. · Zbl 0115.31302
[25] Lions, J. L., Magenes, E., Problemi ai limiti non omogenei V.Ann. Scuola Norm. Sup. Pisa (3)16 (1962), 1–44.
[26] Lions, J. L., Magenes, E.,Problèmes aux limites non homogènes et applications, vol. 1, Dunod, Paris 1968. · Zbl 0165.10801
[27] Littman, W., A connection between {\(\alpha\)}-capacity andm-p polarity,Bull. Amer. Math. Soc. 73 (1967), 862–866. · Zbl 0153.15202
[28] Maz’ja, V. G., The Dirichlet problem for elliptic equations of arbitrary order in unbounded regions.Dokl. Akad. Nauk SSSR 150 (1963), 1221–1224.
[29] Maz’ja, V. G., On (p, l)-capacity, imbedding theorems, and the spectrum of a selfadjoint elliptic operator,Izv. Akad. Nauk SSSR ser. mat. 37 (1973), 356–385.
[30] Maz’ja, V. G., On the connection between two kinds of capacity,Vestnik Leningrad. Univ. 1974, No. 7, 33–40.
[31] Maz’ja, V. G., Havin, V. P., Non-linear potential theory,Uspehi Mat. Nauk 27:6 (1972) 67–138.
[32] Maz’ja, V. G., Havin, V. P., Application of (p, l)-capacity to some problems in the theory of exceptional sets,Mat. Sb. 90 (132) (1973), 558–591.
[33] Mel’nikov, M. S., Sinanjan, S. O., Problems in the theory of approximation of functions of one complex variable,Sovremennye problemy matematiki (ed. Gamkrelidze, R. V.), t.4, 143–250 (Itogi nauki i tehniki), VINITI, Moscow 1975. (English translation:J. Soviet Math. 5 (1976), 688–752.)
[34] Meyers, N. G., A theory of capacities for potentials of functions in Lebesgue classes,Math. Scand. 26 (1970), 255–292. · Zbl 0242.31006
[35] Meyers, N. G., Taylor expansion of Bessel potentials.Indiana Univ. Math. J. 23 (1974), 1043–1049. · Zbl 0288.31004
[36] Meyers, N. G., Continuity properties of potentials,Duke Math. J. 42 (1975), 157–166. · Zbl 0334.31004
[37] Polking, J. C., Approximation inL p by solutions of elliptic partial differential equations,Amer. Math. J. 94 (1972), 1231–1244. · Zbl 0266.35026
[38] Sinanjan, S. O., Approximation by analytic functions and polynomials in the areal mean,Mat. Sb. 69 (111), 546–578. (Amer. Math. Soc. Translations) (2)74 (1968), 91–124.
[39] Sjödin, T., Bessel potentials and extension of continous functions on compact sets,Ark. Mat. 13 (1975), 263–271. · Zbl 0314.31005
[40] Stein, E. M.,Singular integrals and differentiability properties of functions, Princeton University Press, Princeton, N. J., 1970. · Zbl 0207.13501
[41] Triebel, H., Boundary values for Sobolev-spaces with weights. Density ofD({\(\omega\)}) etc.,Ann. Scuola Norm. Sup. Pisa (3)27 (1973), 73–96. · Zbl 0258.46033
[42] Wallin, H., Continuous functions and potential theory,Ark. mat. 5 (1963), 55–84. · Zbl 0134.09404
[43] Babuška, I., Stability of the domain with respect to the fundamental problems in the theory of partial differential equations, mainly in connection with the theory of elasticity I, II (Russian).Czechoslovak Math. J. 11 (86) (1961), 76–105, and 165–203.
[44] Schulze, B.-W., Wildenhain, G.,Methoden der Potentialtheorie für elliptische Differentialgleichungen beliebiger Ordnung. Akademie-Verlag, Berlin, 1977. · Zbl 0369.35001
[45] Saak, È. M., A capacity condition for a domain with a stable Dirichlet problem for higher order elliptic equations,Mat. Sb. 100 (142) (1976), 201–209.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.