×

zbMATH — the first resource for mathematics

On a generalization of the Hopf fibration. II: Complex structures on the products of generalized Brieskorn manifolds. (English) Zbl 0399.53009

MSC:
53C15 General geometric structures on manifolds (almost complex, almost product structures, etc.)
32G05 Deformations of complex structures
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] K. ABE, Characterization of totally geodesic submanifolds in SN and CPN by an inequal-ity, Thoku Math. J. 23 (1971), 219-244. · Zbl 0245.53053
[2] K. ABE, On a generalization of the Hopf fibration, I, Thoku Math. J. 29 (1977), 335-374. · Zbl 0393.53018
[3] R. BOTT, Vector fields and characteristic numbers, Mich. Math. J. 14 (1967), 231-244 · Zbl 0145.43801
[4] E. BRIESKORN, Beispiele zur Differentialtopologie von Singularitaten, Inventions Math. (1966), 1-14. · Zbl 0145.17804
[5] E. BRIESKORN AND A. VAN DE VEN, Some complex structures on products of homotop spheres, Topology 7 (1968), 389-393. · Zbl 0174.54901
[6] E. CALABI AND B. ECKMANN, A class of compact, complex manifolds which are no algebraic, Ann. of Math. 53 (1953), 494-500. JSTOR: · Zbl 0051.40304
[7] H. CARTAN, Quotient d’un espace analytique par un groupe d’automorphismes, Algebrai geometry and topology, Symp. in honor of Lefschetz, Princeton Univ. Press (1957), 90-102. · Zbl 0084.07202
[8] B. GIESECKE, Simpliziele Zerlegungen abzahlbarer analytischer Raume, Math. Zeit. 8 (1964), 177-213. · Zbl 0123.39602
[9] H. GRAUERT AND R. REMMERT, Komplexe Raume, Math. Ann. 136 (1958), 245-318 · Zbl 0087.29003
[10] P. GRIFFITHS AND J. ADAMS, Topics in algebraic and analytic geometry, Math. Notes 13, Princeton Univ. Press. · Zbl 0302.14003
[11] R. C. GUNNING AND H. Rossi, Analytic functions of several complex variables, Prentic Hall (1965). · Zbl 0141.08601
[12] H. HOLMAN, Quotientenraume komplexer Mannigfaltigkeiten nach komplex Liesche Automorphismengruppen, Math. Ann. 139 (1960), 383-402. · Zbl 0142.05001
[13] H. HOPF, Zur Topologie der komplexen Mannigfaltigkeiten, in Studies and Essay presented to R. Courant, New York (1948). · Zbl 0033.02501
[14] K. JA’NICH, Differenzielbare G-Mannigfaltigkeiten, Lecture Notes in Math. 59, Springer Verlag (1968).
[15] L. KAUFFMANN, Link manifolds and periodicity, Bull. Amer. Math. Soc. 79 (1973), 570-573 210K. ABE · Zbl 0258.57019
[16] S. KOBAYASHI, Transformation groups in differential geometry, Springer-Verlag 70 (1972) · Zbl 0246.53031
[17] S. KOBAYASHI AND K. NOMIZU, Foundations of differential geometry, Interscience, Vol I (1963), II (1969). · Zbl 0119.37502
[18] K. KODAIRA, Complex structures on S1 x S3, Proc. Nat. Acad. Sci. USA 55 (1966), 240-243 JSTOR: · Zbl 0141.27402
[19] A. MORIMOTO, On normal almost contact structures, J. Math. Soc. Japan 15 (1963), 420 436. · Zbl 0135.22102
[20] S. MORITA, A topological classification of complex structures on S1 X I”271-1, Topology 1 (1975), 13-22. · Zbl 0301.57010
[21] D. MUMFORD, The topology of normal sigularities of an algebraic surface and a criterio for simplicity, Publ. Math. IHES, No. 9 (1961). · Zbl 0108.16801
[22] A. NEWLANDER AND L. NIRENBERG, Complex analytic coordinates in almost comple manifolds, Ann. of Math. 65 (1957), 391-404. JSTOR: · Zbl 0079.16102
[23] W. D. NEUMANN, S1-actions and the -invariant of their involutions, Bonner Mathema tische Schriften 44, Bonn (1970). · Zbl 0219.57030
[24] R. C. RANDELL, Generalized Brieskorn manifolds with S^-actions, Thesis, Univ. o Wisconsin (1973). · Zbl 0297.57018
[25] G. STOLZENBERG, Volumes, Limits and Extensions of Analytic Spaces, Lecture Notes i Math. 19. Springer-Verlag (1966). · Zbl 0142.33801
[26] H. WHITNEY, Complex analytic variety, Addison-Wesley (1972) · Zbl 0265.32008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.