×

zbMATH — the first resource for mathematics

Non-hyperelliptic Weierstrass points of maximal weight. (English) Zbl 0401.30037

MSC:
30F10 Compact Riemann surfaces and uniformization
30F30 Differentials on Riemann surfaces
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Accola, R.D.M.: Strongly branched coverings of closed Riemann surfaces. Proc. Amer. Math. Soc.26, 315-322 (1970) · Zbl 0212.42501 · doi:10.1090/S0002-9939-1970-0262485-4
[2] Accola, R.D.M.: Riemann surfaces, theta functions, and abelian automorphisms groups. Lecture Notes in Mathematics 483. Berlin, Heidelberg, New York: Springer 1975 · Zbl 0316.30016
[3] Duma, A.: Einige Bemerkungen zum Weierstrassschen Lückensatz. Math. Ann.219, 139-146 (1976) · Zbl 0342.30008 · doi:10.1007/BF01351897
[4] Jenkins, J.A.: Some remarks on Weierstrass points. Proc. Amer. Math. Soc.44, 121-122 (1974) · Zbl 0286.30015 · doi:10.1090/S0002-9939-1974-0328063-7
[5] Kato, T.: On the order of a zero of the theta function. K?dai Math. Sem. Rep.28, 390-407 (1977) · Zbl 0362.30017 · doi:10.2996/kmj/1138847520
[6] Kato, T.: On criteria of \(\tilde g\) -hyperellipticity. To appear in K?dai Math. J.
[7] Walker, R.J.: Algebraic curves. Princeton: Princeton Univ. Press 1950 · Zbl 0039.37701
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.