×

zbMATH — the first resource for mathematics

On the holonomic systems of linear differential equations. II. (English) Zbl 0401.32005

MSC:
32C35 Analytic sheaves and cohomology groups
32C25 Analytic subsets and submanifolds
55N30 Sheaf cohomology in algebraic topology
58C10 Holomorphic maps on manifolds
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Bernstein, I.N.: The analytic continuation of generalized functions with respect to a parameter. Functional Anal. Appl.6, 26-40 (1972)
[2] Grothendieck, A.: Cohomologie Locale des Faisceaux Cohérents et Théorèmes de Lefschetz Locaux et Globeaux (SGA 2). Amsterdam: North-Holland Publ. Co. 1968 · Zbl 0197.47202
[3] Hartshorne, R.: Local Cohomology, Lecture Notes in Math., 41. Berlin-Heidelberg-New York: Springer 1967
[4] Kashiwara, M.: An algebraic study of systems of partial differential equations, local theory of differential operators (Master’s thesis). Sugakushinkokai (in Japanese), 1970
[5] Kashiwara, M.: On the maximally overdetermined system of linear differential equations, I. Publ. R.I.M.S., Kyoto Univ.10, 563-579 (1975) · Zbl 0313.58019
[6] Kashiwara, M.:B-functions and holonomic systems, rationality of roots ofb-functions. Inventiones Math.38, 33-53 (1976) · Zbl 0354.35082
[7] Kashiwara, M., Kawai, T.: On the holonomic systems of micro-differential equations, III. in press (1978) · Zbl 0482.35060
[8] Le Jeune-Jalabert, M., Malgrange, B., Boutet de Monvel: Séminaire ?Opérateurs différentiels et pseudo-différentiels?, I, II, III, IV, Université Scientifique et Médical de Grenoble, Laboratoire de Math. Pures Associé au C.N.R.S., 1975-1976
[9] Sato, M., Kawai, T., Kashiwara, M.: Microfunctions and pseudodifferential equations, Lecture Notes in Math. Berlin-Heidelberg-New York: Springer287, 265-529 (1973)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.