×

zbMATH — the first resource for mathematics

Polynomial interpolation in several complex variables. (English) Zbl 0401.32009

MSC:
32E30 Holomorphic, polynomial and rational approximation, and interpolation in several complex variables; Runge pairs
11J81 Transcendence (general theory)
41A63 Multidimensional problems (should also be assigned at least one other classification number from Section 41-XX)
41A05 Interpolation in approximation theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bishop, E, Holomorphic completions, analytic continuation, and the interpolation of semi-norms, Ann. of math., 78, 468-500, (1963) · Zbl 0131.30901
[2] Bombieri, E; Lang, S, Analytic subgroups on group varieties, Invent. math., 11, 1-14, (1970) · Zbl 0237.14015
[3] ()
[4] Lang, S, Diophantine approximation on abelian varieties with complex multiplication, Advances in math., 17, 281-336, (1975) · Zbl 0306.14019
[5] Masser, D.W, Elliptic functions and transcendence, () · Zbl 0371.10026
[6] Masser, D.W, Linear forms in algebraic points of abelian functions II, (), 55-70 · Zbl 0318.14011
[7] Moreau, M, Zéros de polynômes en plusieurs variables, C. R. acad. sci. Paris Sér. A, 282, 771-774, (1976) · Zbl 0328.32003
[8] Narasimhan, R, Several complex variables, (1971), Univ. of Chicago Press Chicago/London · Zbl 0223.32001
[9] Pólya, G; Pólya, G, Beitrag zur verallgemeinerung des verzerrungssatzes auf mehrfach zusammenhängende gebiete II, (), 352-354, (1928) · JFM 54.0377.01
[10] Shimura, G; Taniyama, Y, Complex multiplication of abelian varieties and its applications to number theory, (1961), Math. Soc. Japan · Zbl 0112.03502
[11] Weir, A.J, Lebesgue integration and measure, (1973), Cambridge Univ. Press Cambridge · Zbl 0257.26001
[12] Masser, D.W, On small values of polynomials, Bull. London math. soc., 9, 257-260, (1977) · Zbl 0381.32006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.