×

zbMATH — the first resource for mathematics

Sphärische Untergruppen in kompakten zusammenhängenden Liegruppen. (German) Zbl 0402.22006

MSC:
22E15 General properties and structure of real Lie groups
33C80 Connections of hypergeometric functions with groups and algebras, and related topics
PDF BibTeX Cite
Full Text: Numdam EuDML
References:
[1] G. Beisel : Diplomarbeit . Bonn (1975).
[2] H. Boerner : Darstellungen von Gruppen . Springer, Berlin-Göttingen-Heidelberg (1955) · Zbl 0068.01603
[3] C. Chevalley : Theory of Lie groups . Princeton University Press, Princeton (1946). · Zbl 0063.00842
[4] C. Chevalley : The algebraic theory of spinors . Columbia University Press, New York (1954). · Zbl 0057.25901
[5] E.B. Dynkin : Semisimple subalgebras of semisimple Lie algebras , Am. Math. Soc. Translations, series 2, 6 (1957) 111-244. · Zbl 0077.03404
[6] I. Gelfand : Spherical functions on symmetric Riemann spaces , Dokl. Akad. Nauk. SSSR, 70 (1950) 5-8. · Zbl 0139.07701
[7] R. Godement : A theory of spherical functions , Transactions Am. Math. Soc., 73 (1952) 496-556. · Zbl 0049.20103
[8] V. Hauschild : ” Einige Folgerungen aus Kostants Multiplizitätenformel ”. Diplomarbeit. Bonn (1970).
[9] S. Helgason : Differential geometry and symmetric spaces . Academic Press, New York-London (1962). · Zbl 0111.18101
[10] W.-C. Hsiang and W.-Y. Hsiang : Differentiable actions of compact connected classical groups II , Ann. of Math., 92 (1970) 189-223. · Zbl 0205.53902
[11] A.U. Klimyk : Decomposition of a direct product of irreducible representations... , Am. Journ. Math. Transl., series 2, 76 (1968) 63-73. · Zbl 0228.17004
[12] M. Krämer : Über das Verhalten endlicher Untergruppen bei Darstellungen kompakter Liegruppen , Inventiones Math., 16 (1972) 15-39. · Zbl 0229.22023
[13] M. Krämer : Über Untergruppen kompakter Liegruppen als Isotropiegruppen bei linearen Aktionen , Math. Z., 147 (1976) 207-224. · Zbl 0314.22013
[14] M. Krämer : Eine Klassifikation bestimmter Untergruppen kompakter zusammenhängender Liegruppen , Communic. in Algebra, 3 (1975) 691-737. · Zbl 0309.22013
[15] M. Krämer : Multiplicity free subgroups of compact connected Lie groups , Archiv der Mathematik, 27 (1976) 28-36. · Zbl 0322.22011
[16] J. Lepowsky : Multiplicity formulas for certain semi-simple Lie groups , Bull. Am. Math. Soc., 77 (1971) 601-604. · Zbl 0228.17003
[17] O. Loos : Symmetric spaces, two volumes . Benjamin, New York-Amsterdam (1969). · Zbl 0175.48601
[18] V.B. Mandeltsveig : Structure of G2-multiplets , Sov. J. Nucl. Phys. (1965).
[19] F. Mayer-Lindenberg : ” Das Spektrum des Laplace-Operators auf kompakten Riemannschen symmetrischen Räumen ”. Diplomarbeit. Bonn (1972).
[20] A.P. Stone : Semi-simple subgroups of semi-simple groups , Journ. Math. Phys., 11 (1970) 29-38. · Zbl 0202.03001
[21] M. Sugiura : Representations of compact groups realized by spherical functions on symmetric spaces , Proc. Japan. Acad., 38 (1962) 111-113. · Zbl 0134.26901
[22] J. Tits : Tabellen zu den einfachen Liegruppen und ihren Darstellungen . Lecture notes in Mathematics, 40, Springer, Berlin-Heidelberg -New York (1967). · Zbl 0166.29703
[23] N.J. Vilenkin : Special functions and the theory of group representations , Translations of Mathematical Monographs 22. AMS, Providence, R.I. (1968). · Zbl 0172.18404
[24] D.P. Zhelobenko : The classical groups, spectral analysis of their finite dimensional representations , Russian Math. Surveys, 17 (1962) 1-94. · Zbl 0142.26703
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.