×

zbMATH — the first resource for mathematics

On the approximate conformal mapping of multiply connected domains. (English) Zbl 0402.30007

MSC:
30C20 Conformal mappings of special domains
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Ellacott, S.W.: A technique for approximate conformal mapping. In: Proceedings of the 1977 L.M.S. Symposium on multivariate approximation, D. Hanscombe ed., Academic Press (in press) · Zbl 0408.30045
[2] Gaier, D.: Konstruktive Methoden der Konformen Abbildung. Berlin-Heidelberg-New York: Springer 1964 · Zbl 0132.36702
[3] Hille, E.: Analytic function theory (Vol. II). Boston: Ginn 1962 · Zbl 0102.29401
[4] Levin, D., Papamichael, N., Sideridis, A.: The bergman kernel method for the numerical conformal mapping of simply connected domains. Brunel University, Dept. of Mathematics TR/71. 1977 · Zbl 0391.30008
[5] Nehari, Z.: Conformal Mapping. New York: McGraw-Hill 1952 · Zbl 0048.31503
[6] Opfer, G.: Konforme Abbildungen und ihre numerische Behandlung. (Sonderdruck aus ?berblicke Mathematik Band 7). Mannheim: Bioliographisches Institut 1974 · Zbl 0305.30011
[7] Richiardson, M.K., Wilson, H.B.: A numerical method for the conformal mapping of finite doubly connected regions. In: Developments in theoretical applied mathematics (Vol. III). W. Shaw, ed., New York: Pergamon 1967
[8] Walsh, J.L.: Interpolation and Approximation by rational functions in the complex domain. Amer. Math. Soc. Coll. Pub. Vol. XX. Providence. 5th Ed. 1969
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.