zbMATH — the first resource for mathematics

Sur une caractérisation de la boule parmi les domaines de \(\mathbb{C}^n\) par son groupe d’automorphismes. (French) Zbl 0402.32001

32A07 Special domains in \({\mathbb C}^n\) (Reinhardt, Hartogs, circular, tube) (MSC2010)
Full Text: DOI Numdam EuDML
[1] H. CARTAN, LES fonctions de deux variables complexes et le problème de la représentation analytique, J. Math. Pures Appl., 10 (1931), 1-114 et : Sur les fonctions de plusieurs variables complexes, l’itération de transformations intérieures d’un domaine borné, Math. Z., 35 (1932), 760-773. · JFM 57.0387.01
[2] I. GRAHAM, Boundary behaviour of the caratheodory and Kobayashi metrics in strictly pseudo-convex domains in cn with smooth boundary, TAMS, 207 (1975), 219-240. · Zbl 0305.32011
[3] G. M. HENKIN, An analytic polyhedron is not holomorphically equivalent to a strictly pseudo-convex domain, Soviet Math. Dokl., vol. 14 n° 3 (1973). · Zbl 0288.32015
[4] L. HÖRMANDER, L2 estimates and existence theorems for the ∂ operator, Acta Math., 113 (1965), 89-152. · Zbl 0158.11002
[5] N. KERZMAN, Taut manifolds and domains of holomorphy in cn, Notices AMS, 16 (1969), 675-676.
[6] S. KOBAYASHI, Hyperbolic manifolds and holomorphic mappings, M. Dekker NY (1970). · Zbl 0207.37902
[7] R. NARASIMHAN, Several complex variables, The Univ. of Chicago Press, 1971. · Zbl 0223.32001
[8] B. WONG, Characterization of the unit ball in cn by its automorphism group, Inv. Math., 41 (1977), 253-257. · Zbl 0385.32016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.