×

zbMATH — the first resource for mathematics

Covers in lattices of quasivarieties and independent axiomatizability. (English. Russian original) Zbl 0403.08009
Algebra Logic 16, 340-369 (1978); translation from Algebra Logika 16, 507-548 (1977).

MSC:
08C15 Quasivarieties
03C60 Model-theoretic algebra
08C10 Axiomatic model classes
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] A. A. Akataev and D. M. Smirnov, ”Lattices of subvarieties of varieties of algebras,” Algebra Logika,7, No. 1, 5–25 (1968). · Zbl 0201.00802
[2] V. P. Belkin, ”Quasi-identities of certain finite algebras,” Mat. Zametki,22, No. 3, 335–338 (1977). · Zbl 0362.08005
[3] A. I. Budkin and V. A. Gorbunov, ”On the theory of quasivarieties of algebraic systems,” Algebra Logika,14, No. 2, 123–142 (1975). · Zbl 0317.08003
[4] V. A. Gorbunov, ”Lattices of quasivarieties,” Algebra Logika,15, No. 4, 436–457 (1976). · Zbl 0359.06014
[5] V. I. Igoshin, ”Quasivarieties of lattices,” Mat. Zametki,16, No. 1, 49–56 (1974).
[6] Kourovka Notebook (Unsolved Problems of Group Theory) [in Russian], Novosibirsk (1976).
[7] A. I. Mal’tsev, Algebraic Systems [in Russian], Nauka (1970).
[8] A. I. Mal’tsev, ”Some questions on the boundary between algebra and mathematical logic,” in: Proceedings of the International Congress of Mathematicians, Moscow, 1966, Mir (1968), pp. 217–231.
[9] A. I. Mal’tsev, ”Universally axiomatizable subclasses of locally finite classes of models,” Sib. Mat. Zh.,8, No. 5, 1005–1014 (1967).
[10] A. N. Trakhtman, ”A variety of semigroups having no irreducible basis of identities,” Mat. Zametki,21, No. 6, 865–871 (1977).
[11] A. N. Trakhtman, ”Covering elements in the lattice of varieties of algebras,” Mat. Zametki,15, No. 2, 174–177 (1974). · Zbl 0361.08012
[12] P. Crawley and R. P. Dilworth, Algebraic Theory of Lattices, Prentice-Hall, Englewood Cliffs, New Jersey (1973). · Zbl 0494.06001
[13] A. Day, ”Splitting algebras and a weak notion of projectivity,” Algebra Univ.,5, 153–162 (1975). · Zbl 0324.08004
[14] J. Jezek, ”Intervals in the lattice of varieties,” Algebra Univ.,6, 147–158 (1976). · Zbl 0354.08007
[15] B. Jónsson, ”Algebras whose congruence lattices are distributive,” Math. Scand.,21, 110–121 (1967). · Zbl 0167.28401
[16] B. Jónsson, ”Equational classes of lattices,” Math. Scand.,22, 187–196 (1968). · Zbl 0185.03601
[17] A. Kostinsky, ”Projective lattices and bounded homomorphisms,” Pacific J. Math.,40, 111–119 (1972). · Zbl 0253.06002
[18] A. I. Mal’tsev (Malcev), The Metamathematics of Algebraic Systems (Collected Papers: 1936–1967), North-Holland, Amsterdam-London (1971).
[19] A. Monteiro, ”Axiomes indépendants pour les algèbres de Brouwer,” Revista Union Math. Argentina,27, 149–160 (1955). · Zbl 0072.25004
[20] W. Nemitz and T. Whaley, ”Varieties of implicative semilattices. II,” Pacific J. Math.,45, No. 1, 303–311 (1973). · Zbl 0264.06009
[21] A. Tarski, ”Equational logic and equational theories of algebras,” in: Contributions to Mathematical Logic, North-Holland, Amsterdam-London (1968), pp. 275–288. · Zbl 0209.01402
[22] I. Reznikoff, ”Tout ensemble de formules de la logique classique est équivalent à un ensemble indépendant,” C. R. Hebdomadaire Seances Acad. Sci.,260, No. 1, 2385–2388 (1965). · Zbl 0143.00702
[23] A. Shafaat, ”On implicational compactness,” Canad. J. Math.,26, No. 3, 761–768 (1974). · Zbl 0295.08003
[24] A. Shafaat, ”Subcartesian products of finitely many finite algebras,” Proc. Am. Math. Soc.,26, No. 3, 401–404 (1970). · Zbl 0211.32002
[25] V. Slavik, ”Note on subquasivarieties of some varieties of lattices,” Comment. Math. Carol.,16, No. 1, 173–181 (1975). · Zbl 0302.06008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.