zbMATH — the first resource for mathematics

Numerical taxonomy with fuzzy sets. (English) Zbl 0403.62039

62H30 Classification and discrimination; cluster analysis (statistical aspects)
Full Text: DOI
[1] Adey, W.: Organization of Brain Tissue: Is the Brain a Noisy Processor? Int. J. Neuroscience3, 271–284 (1972).
[2] Anderson, E.: The Irises of the Gaspe Peninsula. Bull. Amer. Iris Soc.59, 2–5 (1935).
[3] Ball, G. H., Hall, D. J.: A Clustering Technique for Summarizing Multivariate Data. Behavorial Science12, 153–155 (1967).
[4] Bellman, R. E., Kalaba, R., Zadeh, L.: Abstraction and Pattern Classification. J. Math. Anal. Appl.13, 1–7 (1966). · Zbl 0134.15305
[5] Duda, R. O., Hart, P. E.: Pattern Classification and Scene Analysis. New York: Wiley-Interscience 1973. · Zbl 0277.68056
[6] Dunn, J. C.: A Fuzzy Relative of the ISODATA Process and its Use in Detecting Compact, Well-Separated Clusters. J. Cybernetics. (In press, 1973a.) · Zbl 0291.68033
[7] Dunn, J. C.: Well Separated Clusters and Optimal Fuzzy Partitions. (Unpublished report, 1973b.) · Zbl 0291.68033
[8] Fisher, R. A.: The Use of Multiple Measurements in Taxonomic Problems. Annals of Eugenics7, 179–188 (1936).
[9] Flake, R. H., Turner, B. L.: Numerical Classification for Taxonomic Problems. J. Theo. Bio.20, 260–270 (1968).
[10] Friedman, H. P., Rubin, J.: On Some Invariant Criteria for Grouping Data. JASA62, 1159–1178 (1967).
[11] Fukunaga, K., Koontz, W.: A Criterion and Algorithm for Grouping Data. IEEE Trans. Comp.C-19, 917–923 (1970). · Zbl 0206.48002
[12] Gitman, I., Levine, M.: An Algorithm for Detecting Unimodal Fuzzy Sets and its Application as a Clustering Technique. IEEE Trans. Comp.C-19, 583–593 (1970). · Zbl 0194.48101
[13] Jensen, R. E.: A Dynamic Programming Algorithm for Cluster Analysis. OR17, 1034–1057 (1969). · Zbl 0183.49103
[14] Kendall, M. G.: Discrimination and Classification, in: Multivariate Analysis (Krishnaiah, P., ed.), pp. 165–185. New York: Academic Press 1966.
[15] Larsen, L. E., Ruspini, E. H., McNew, J. J., Walter, D. O., Adey, W. R.: A Test of Sleep Staging Systems in the Unrestrained Chimpanzee. Brain Research40, 319–343 (1972).
[16] Ling, R. F.: Cluster Analysis. PhD Thesis, Yale University, New Haven, 1971.
[17] MacQueen, J.: Some Methods for Classification and Analysis of Multivariate Observations, in: Proc. Fifth Berkeley Symposium on Math. Stat. and Probability (LeCam, L. M., Neyman, J., eds.), pp. 281–297. Berkeley: UC Press 1967. · Zbl 0214.46201
[18] Rao, M. R.: Cluster Analysis and Mathematical Programming. JASA66, 622–626 (1971). · Zbl 0238.90042
[19] Ruspini, E.: A New Approach to Clustering. Information and Control15, 22–32 (1969). · Zbl 0192.57101
[20] Ruspini, E.: Numerical Methods for Fuzzy Clustering. Infor. Sci.2, 319–350 (1970). · Zbl 0205.21301
[21] Scott, A., Symons, M.: Clustering Methods Based on Likelihood Ratio Criteria. Biometrics27, 387–397 (1971).
[22] Sokal, R., Sneath, P.: Principles of Numerical Taxonomy. San Francisco: Freeman 1963. · Zbl 0285.92001
[23] Wee, W. G.: On Generalizations of Adaptive Algorithms and Application of the Fuzzy Sets Concept to Pattern Classification. PhD Thesis, Purdue University, Lafayette, 1967.
[24] Wolfe, J.: Pattern Clustering by Multivariate Mixture Analysis. Mult. Behav. Research5, 329–350 (1970).
[25] Zadeh, L. A.: Fuzzy Sets. Information and Control8, 338–353 (1965). · Zbl 0139.24606
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.