×

zbMATH — the first resource for mathematics

Quasi-Monte Carlo methods and pseudo-random numbers. (English) Zbl 0404.65003

MSC:
65C10 Random number generation in numerical analysis
65-02 Research exposition (monographs, survey articles) pertaining to numerical analysis
65C05 Monte Carlo methods
65D32 Numerical quadrature and cubature formulas
65N06 Finite difference methods for boundary value problems involving PDEs
11J71 Distribution modulo one
11K06 General theory of distribution modulo \(1\)
11B37 Recurrences
11J70 Continued fractions and generalizations
11L03 Trigonometric and exponential sums, general
11K38 Irregularities of distribution, discrepancy
11R06 PV-numbers and generalizations; other special algebraic numbers; Mahler measure
68Q25 Analysis of algorithms and problem complexity
Software:
rhalton
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] J. H. Ahrens, U. Dieter, and A. Grube, Pseudo-random numbers. A new proposal for the choice of multiplicators., Computing (Arch. Elektron. Rechnen) 6 (1970), 121 – 138 (English, with German summary). · Zbl 0212.18205
[2] J. L. Altaber, Représentations arithmétiques de grandeurs aléatoires, Ann. Fac. Sci. Univ. Clermont-Ferrand 37 (1967), 1 – 61 (French).
[3] I. I. Artobolevskiĭ, M. D. Genkin, V. K. Grinkevič, I. M. Sobol’ and R. B. Statnikov, Optimization in the theory of machines by an LP-search, Dokl. Akad. Nauk SSSR 200 (1971), 1287-1290. (Russian) · Zbl 0258.93030
[4] K. I. Babenko, Approximation by trigonometric polynomials in a certain class of periodic functions of several variables, Soviet Math. Dokl. 1 (1960), 672 – 675. · Zbl 0102.05301
[5] N. S. Bahvalov, Approximate computation of multiple integrals, Vestnik Moskov. Univ. Ser. Mat. Meh. Astr. Fiz. Him. 1959 (1959), no. 4, 3 – 18 (Russian).
[6] N. S. Bahvalov, Numerical solution of the Dirichlet problem for Laplace’s equation., Vestnik Moskov. Univ. Ser. Mat. Meh. Astr. Fiz. Him. 1959 (1959), no. 5, 171 – 195 (Russian).
[7] N. S. Bahvalov, Estimates in the mean of the remainder term of quadratic formulas, Ž. Vyčisl. Mat. i Mat. Fiz. 1 (1961), 64 – 77 (Russian).
[8] N. S. Bahvalov, On a rate of convergence of indeterministic integration processes within the functional classes W, Teor. Verojatnost. i Primenen.7 (1962), 238 = Theor. Probability Appl. 7 (1962), 227.
[9] N. S. Bahvalov, On the convergence of indeterministic integration processes on slightly smooth functions, Teor. Verojatnost. i Primenen.7 (1962), 473-474 = Theor. Probability Appl. 7 (1962), 463.
[10] N. S. Bahvalov, Optimal convergence bounds for quadrature processes and integration methods of Monte Carlo type for classes of functions, Ž. Vyčisl. Mat. i Mat. Fiz. 4 (1964), no. 4, suppl., 5 – 63 (Russian).
[11] N. S. Bahvalov, N. M. Korobov, and N. N. Čencov, The application of number-theoretic nets to numerical analysis problems, Proc. Fourth All-Union Math. Congr. (Leningrad, 1961) Izdat. ”Nauka”, Leningrad, 1964, pp. 580 – 587 (Russian).
[12] A. Baker, On some Diophantine inequalities involving the exponential function, Canad. J. Math. 17 (1965), 616 – 626. · Zbl 0147.30901 · doi:10.4153/CJM-1965-061-8 · doi.org
[13] Christopher T. H. Baker, On the nature of certain quadrature formulas and their errors, SIAM J. Numer. Anal. 5 (1968), 783 – 804. · Zbl 0216.23101 · doi:10.1137/0705059 · doi.org
[14] J. Bass, Nombres aléatoires, suites arithmétiques, méthode de Monte-Carlo, Publ. Inst. Statist. Univ. Paris 9 (1960), 289 – 325 (French). · Zbl 0097.13401
[15] J. Bass, Stationary functions and their applications to turbulence. I. Stationary functions, II. Turbulent solutions of the Navier-Stokes equations, J. Math. Anal. Appl. 47 (1974), 354-399, 458-503. · Zbl 0286.76024
[16] J. Bass and J. Guilloud, Méthode de Monte-Carlo et suites uniformément denses, Chiffres 1 (1958), 149 – 155 (French). · Zbl 0089.11502
[17] K. Bauknecht, J. Kohlas, and C. A. Zehnder, Simulationstechnik, Springer-Verlag, Berlin-New York, 1976 (German). Entwurf und Simulation von Systemen auf digitalen Rechenautomaten; Hochschultext. · Zbl 0342.68003
[18] Jean-Paul Bertrandias, Calcul d’une intégrale au moyen de la suite \?_\?=\?_\?. Évaluation de l’erreur, Publ. Inst. Statist. Univ. Paris 9 (1960), 335 – 357 (French). · Zbl 0101.11705
[19] W. A. Beyer, Lattice structure and reduced bases of random vectors generated by linear recurrences, Applications of number theory to numerical analysis (Proc. Sympos., Univ. Montréal, Montreal, Que., 1971) Academic Press, New York, 1972, pp. 361 – 370.
[20] W. A. Beyer, R. B. Roof, and Dorothy Williamson, The lattice structure of multiplicative congruential pseudo-random vectors, Math. Comp. 25 (1971), 345 – 363. · Zbl 0269.65003
[21] Patrick Billingsley and Flemming Topsøe, Uniformity in weak convergence, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 7 (1967), 1 – 16. · Zbl 0147.15701 · doi:10.1007/BF00532093 · doi.org
[22] Christa Binder, Über einen Satz von de Bruijn und Post, Österreich. Akad. Wiss. Math.-Natur. Kl. S.-B. II 179 (1971), 233 – 251 (German). · Zbl 0262.26010
[23] I. Borosh, Rational continued fractions with small partial quotients (preprint).
[24] I. Borosh and H. Niederreiter, Optimal multipliers for pseudo-random number generation by the linear congruential method (to appear). · Zbl 0505.65001
[25] G. W. Brown, Monte Carlo methods, E. F. Beckenbach , Modern Mathematics for the Engineer, McGraw-Hill, New York, 1956, Chapter 12.
[26] O. V. Brušlinskaja, Practical applications of the method of optimal coefficients to the computation of multiple integrals, Questions of Computational Mathematics and Computing Technology , Gos. Naučno-Tehn. Izdat. Mašinostr. Lit., Moscow, 1963, pp. 45-48. (Russian)
[27] N. P. Buslenko, Simulation von Produktionsprozessen, BSB B. G. Teubner Verlagsgesellschaft, Leipzig, 1971 (German). Übersetzung aus dem Russischen von H. Jüttler and H. Fiedler. · Zbl 0227.90023
[28] N. P. Buslenko, D. I. Golenko, Yu. A. Shreider, I. M. Sobol\(^{\prime}\), and V. G. Sragovich, The Monte Carlo method. The method of statistical trials, Edited by Ju. A. Šreĭder. Translated from the Russian by G. J. Tee. Translation edited by D. M. Parkyn. International Series of Monographs in Pure and Applied Mathematics, Vol. 87, Pergamon Press, Oxford-New York-Paris, 1966. · Zbl 0139.35602
[29] V. V. Bykov, Digital simulation and statistical radio engineering, Izdat. ”Sov. Radio”, Moscow, 1971. (Russian)
[30] J. W. S. Cassels, An extension of the law of the iterated logarithm, Proc. Cambridge Philos. Soc. 47 (1951), 55 – 64. · Zbl 0042.13704
[31] G. Cenacchi and A. De Matteis, Pseudo-random numbers for comparative Monte Carlo calculations, Numer. Math. 16 (1970/1971), 11 – 15. · Zbl 0187.12802 · doi:10.1007/BF02162402 · doi.org
[32] G. Cenacchi and A. De Matteis, Quasi-random sequences by power residues, Numer. Math. 20 (1972/73), 54 – 63. · Zbl 0231.65008 · doi:10.1007/BF01436642 · doi.org
[33] N. N. Čencov, Quadrature formulas for functions of infinitely many variables, Ž. Vyčisl. Mat. i Mat. Fiz. 1 (1961), 418 – 424 (Russian).
[34] N. N. Čencov, Pseudo-random numbers for the simulation of Markov chains, Ž. Vyčisl. Mat. i Mat. Fiz. 7 (1967), 632 – 643 (Russian).
[35] Gregory J. Chaitin, On the length of programs for computing finite binary sequences, J. Assoc. Comput. Mach. 13 (1966), 547 – 569. · Zbl 0158.25301 · doi:10.1145/321356.321363 · doi.org
[36] G. J. Chaitin, Randomness and mathematical proof, Sci. Amer. 232 (1975), no. 5, 47-52.
[37] Charles K. Chui, A convergence theorem for certain Riemann sums, Canad. Math. Bull. 12 (1969), 523 – 525. · Zbl 0181.33002 · doi:10.4153/CMB-1969-071-8 · doi.org
[38] Charles K. Chui, Concerning rates of convergence of Riemann sums, J. Approximation Theory 4 (1971), 279 – 287. · Zbl 0221.41022
[39] Charles K. Chui, Convergence of certain quadrature processes, Aequationes Math. 9 (1973), 242 – 244. · Zbl 0265.41019 · doi:10.1007/BF01832631 · doi.org
[40] Kai-Lai Chung, An estimate concerning the Kolmogoroff limit distribution, Trans. Amer. Math. Soc. 67 (1949), 36 – 50. · Zbl 0034.22602
[41] Alonzo Church, On the concept of a random sequence, Bull. Amer. Math. Soc. 46 (1940), 130 – 135. · Zbl 0022.36904
[42] H. Conroy, Molecular Schrödinger equation. VIII: A new method for the evaluation of multidimensional integrals, J. Chemical Phys. 47 (1967), 5307-5318.
[43] Arthur H. Copeland, Admissible Numbers in the Theory of Probability, Amer. J. Math. 50 (1928), no. 4, 535 – 552. · JFM 54.0542.06 · doi:10.2307/2370609 · doi.org
[44] Jacques Couot, Application des suites \?\? á l’intégration numérique, C. R. Acad. Sci. Paris Sér. A-B 264 (1967), A183 – A186 (French). · Zbl 0161.36102
[45] Jacques Couot, Application des suites \?\Theta à l’intégration multiple sur le tore, C. R. Acad. Sci. Paris Sér. A-B 266 (1968), A131 – A134 (French). · Zbl 0176.14601
[46] R. R. Coveyou, Serial correlation in the generation of pseudo-random numbers, J. Assoc. Comput. Mach. 7 (1960), 72 – 74. · Zbl 0096.33903 · doi:10.1145/321008.321018 · doi.org
[47] R. R. Coveyou, Random number generation is too important to be left to chance, Studies in Appl. Math., vol. 3, Soc. Industr. Appl. Math., Philadelphia, Pa., 1969, pp. 70-111.
[48] R. R. Coveyou and R. D. Macpherson, Fourier analysis of uniform random number generators, J. Assoc. Comput. Mach. 14 (1967), 100 – 119. · Zbl 0155.22801 · doi:10.1145/321371.321379 · doi.org
[49] R. Cranley and T. N. L. Patterson, Randomization of number theoretic methods for multiple integration, SIAM J. Numer. Anal. 13 (1976), no. 6, 904 – 914. · Zbl 0354.65016 · doi:10.1137/0713071 · doi.org
[50] H. Davenport, Note on irregularities of distribution, Mathematika 3 (1956), 131 – 135. · Zbl 0073.03402 · doi:10.1112/S0025579300001807 · doi.org
[51] Philip J. Davis, On the numerical integration of periodic analytic functions, On numerical approximation. Proceedings of a Symposium, Madison, April 21-23, 1958, Edited by R. E. Langer. Publication no. 1 of the Mathematics Research Center, U.S. Army, the University of Wisconsin, The University of Wisconsin Press, Madison, 1959, pp. 45 – 59.
[52] P. Davis and P. Rabinowitz, Some Monte Carlo experiments in computing multiple integrals, Math. Tables Aids Comput. 10 (1956), 1 – 8. · Zbl 0072.14403
[53] Philip J. Davis and Philip Rabinowitz, Methods of numerical integration, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers] New York-London, 1975. Computer Science and Applied Mathematics. · Zbl 0304.65016
[54] N. G. de Bruijn and K. A. Post, A remark on uniformly distributed sequences and Riemann integrability, Nederl. Akad. Wetensch. Proc. Ser. A 71=Indag. Math. 30 (1968), 149 – 150. · Zbl 0169.38401
[55] R. Devillers, J. J. Dumont, and G. Latouche, Tests de générateurs pseudo-aléatoires, Acad. Roy. Belg. Bull. Cl. Sci. (5) 59 (1973), 703 – 724 (French, with English summary). · Zbl 0274.65007
[56] U. Dieter, Autokcorrelation multiplikativ erzeugter Pseudo-Zufallszahlen, Operations Research-Verfahren 6 (1969), 69-85. · Zbl 0185.47302
[57] U. Dieter, Pseudo-random numbers. The exact distribution of pairs, Math. Comp. 25 (1971), 855 – 883. · Zbl 0257.65010
[58] U. Dieter, Statistical interdependence of pseudo-random numbers generated by the linear congruential method, Applications of number theory to numerical analysis (Proc. Sympos., Univ. Montréal, Montreal, Que., 1971) Academic Press, New York, 1972, pp. 287 – 317.
[59] U. Dieter, Pseudo-random numbers: Permutations of triplets, unpublished manuscript.
[60] U. Dieter and J. Ahrens, An exact determination of serial correlations of pseudorandom numbers., Numer. Math. 17 (1971), 101 – 123. · Zbl 0228.65006 · doi:10.1007/BF01406000 · doi.org
[61] D. Y. Downham and F. D. K. Roberts, Multiplicative congruential pseudo-random number generators, Comput. J. 10 (1967), 74-77. · Zbl 0148.40004
[62] H. J. A. Duparc, C. G. Lekkerkerker, and W. Peremans, Reduced sequences of integers and pseudo-random numbers, Rapport ZW 1953-002, Math. Centrum Amsterdam., 1953. · Zbl 0051.27403
[63] P. D. T. A. Elliott, On distribution functions (\?\?\?1): Quantitative Fourier inversion, J. Number Theory 4 (1972), 509 – 522. · Zbl 0253.10042 · doi:10.1016/0022-314X(72)90024-8 · doi.org
[64] P. Erdös and P. Turán, On a problem in the theory of uniform distribution. I, Nederl. Akad. Wetensch., Proc. 51 (1948), 1146 – 1154 = Indagationes Math. 10, 370 – 378 (1948). · Zbl 0031.25402
[65] S. M. Ermakov, A remark on pseudorandom sequences, Ž. Vyčisl. Mat. i Mat. Fiz. 12 (1972), 1077 – 1082, 1088 (Russian).
[66] S. M. Ermakow, Die Monte-Carlo-Methode und verwandte Fragen, R. Oldenbourg Verlag, Munich-Vienna, 1975. Übersetzt aus dem Russischen von Erich Schinke und Martin Schleiff. · Zbl 0307.65004
[67] Monique Esmenjaud-Bonnardel, Un procédé de génération de nombres ”pseudo-aléatoires” pour \?\?\?500, Rev. Française Traitement Information Chiffres 7 (1964), 185 – 197 (French). · Zbl 0131.16106
[68] B. M. Fellen, An implementation of the Tausworthe generator, Comm. ACM 12 (1969), 413.
[69] G. S. Fishman, Concepts and methods in discrete event digital simulation, Wiley, New York, 1973.
[70] Lloyd D. Fosdick, The Monte Carlo method in quantum statistics, SIAM Rev. 10 (1968), 315 – 328. · doi:10.1137/1010057 · doi.org
[71] J. N. Franklin, On the equidistribution of pseudo-random numbers, Quart. Appl. Math. 16 (1958), 183 – 188. · Zbl 0085.12802
[72] Joel N. Franklin, Deterministic simulation of random processes, Math. Comp. 17 (1963), 28 – 59. · Zbl 0124.34601
[73] Joel N. Franklin, Numerical simulation of stationary and non-stationary Gaussian random processes, SIAM Rev. 7 (1965), 68 – 80. · Zbl 0133.40502 · doi:10.1137/1007007 · doi.org
[74] K. K. Frolov, Upper bounds for the errors of quadrature formulae on classes of functions, Dokl. Akad. Nauk SSSR 231 (1976), no. 4, 818 – 821 (Russian).
[75] Hyman Gabai, On the discrepancy of certain sequences \?\?\?1, Nederl. Akad. Wetensch. Proc. Ser. A 66=Indag. Math. 25 (1963), 603 – 605. · Zbl 0129.03102
[76] Hyman Gabai, On the discrepancy of certain sequences \?\?\?1, Illinois J. Math. 11 (1967), 1 – 12.
[77] I. M. Gel’fand, S. M. Feĭnberg, A. S. Frolov and N. N. Čencov, On application of the method of random trials (Monte Carlo method) for the solution of a kinetic equation, Proc. 2nd Internat. Conf. on the Peaceful Uses of Atomic Energy (Geneva, 1958), vol. 2, Atomizdat, Moscow, 1959, pp. 628-633. (Russian)
[78] I. M. Gel\(^{\prime}\)fand, A. S. Frolov, and N. N. Čencov, The computation of continuous integrals by the Monte Carlo method, Izv. Vysš. Učebn. Zaved. Matematika 1958 (1958), no. 5 (6), 32 – 45 (Russian).
[79] Вероятностные вычислител\(^{\приме}\)ные модели., Издат. ”Наука”, Мосцощ, 1973 (Руссиан).
[80] Моделирование и статистический анализ псевдослучайных чисел на ѐлектронных вычислител\(^{\приме}\)ных машинах, Издат. ”Наука”, Мосцощ, 1965 (Руссиан).
[81] S. W. Golomb, Sequences with randomness properties, Glenn L. Martin Co. Report, Baltimore, Md., 1955.
[82] I. J. Good and R. A. Gaskins, Some relationships satisfied by additive and multiplicative recurrent congruential sequences, with implications for pseudorandom number generation, Computers in number theory (Proc. Sci. Res. Council Atlas Sympos. No. 2, Oxford, 1969) Academic Press, London, 1971, pp. 125 – 136. · Zbl 0216.32003
[83] L. K. Gorskiĭ, Statistical algorithms for investigating reliability, Izdat. ”Nauka”, Moscow, 1970. (Russian)
[84] B. L. Granovskiĭ and S. M. Ermakov, The Monte Carlo method, Probability theory. Mathematical statistics. Theoretical cybernetics, Vol. 13 (Russian), Itogi Nauki i Tehniki, Akad. Nauk SSSR Vsesojuz. Inst. Naučn. i Tehn. Informacii, Moscow, 1976, pp. 59 – 108, 299 (Russian).
[85] Bert F. Green Jr., J. E. Keith Smith, and Laura Klem, Empirical tests of an additive random number generator, J. Assoc. Comput. Mach. 6 (1959), 527 – 537. · Zbl 0096.33901 · doi:10.1145/320998.321006 · doi.org
[86] Martin Greenberger, An a priori determination of serial correlation in computer generated random numbers, Math. Comp. 15 (1961), 383 – 389. · Zbl 0113.33504
[87] M. Greenberger, Method in randomness, Comm. ACM 8 (1965), 177-179. · Zbl 0149.12611
[88] J. A. Greenwood, A fast machine-independent long-period generator for 31-bit pseudorandom integers, Compstat 1976: Proceedings in Computational Statistics , Physica-Verlag, Vienna, 1976, pp. 30-37. · Zbl 0382.65002
[89] A. Grube, Mehrfach rekursiv-erzeugte Pseudo-Zufallszahlen, Z. Angew. Math. Mech. 53 (1973), T223 – T225 (German). Vorträge der Wissenschaftlichen Jahrestagung der Gesellschaft für Angewandte Mathematik und Mechanik (Ljubljana, 1972). · Zbl 0264.65004
[90] V. S. Gubenko, N. E. Kirillov, K. A. Meškovskiĭ and A. I. Čerkunov, Formation of pseudo-random uniformly distributed numbers from noise-like signals, Izv. Akad. Nauk SSSR Tehn. Kibernet. 1969, no. 1, 57-63. (Russian)
[91] Fred G. Gustavson and Werner Liniger, A fast random number generator with good statistical properties, Computing (Arch. Elektron. Rechnen) 6 (1970), 221 – 226 (English, with German summary). · Zbl 0223.65003
[92] Seymour Haber, On a sequence of points of interest for numerical quadrature, J. Res. Nat. Bur. Standards Sect. B 70B (1966), 127 – 136. · Zbl 0158.16002
[93] Seymour Haber, A modified Monte-Carlo quadrature, Math. Comp. 20 (1966), 361 – 368. · Zbl 0152.15103
[94] Seymour Haber, Sequences of numbers that are approximately completely equidistributed, J. Assoc. Comput. Mach. 17 (1970), 269 – 272. · Zbl 0194.47801 · doi:10.1145/321574.321580 · doi.org
[95] Seymour Haber, Numerical evaluation of multiple integrals, SIAM Rev. 12 (1970), 481 – 526. · Zbl 0206.46905 · doi:10.1137/1012102 · doi.org
[96] Seymour Haber, Experiments on optimal coefficients, Applications of number theory to numerical analysis (Proc. Sympos., Univ. Montréal, Montreal, Que., 1971) Academic Press, New York, 1972, pp. 11 – 37.
[97] Seymour Haber and Charles F. Osgood, On a theorem of Piatetsky-Shapiro and approximation of multiple integrals, Math. Comp. 23 (1969), 165 – 168. · Zbl 0184.38202
[99] J. H. Halton, On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals, Numer. Math. 2 (1960), 84 – 90. · Zbl 0090.34505 · doi:10.1007/BF01386213 · doi.org
[100] John H. Halton, A retrospective and prospective survey of the Monte Carlo method, SIAM Rev. 12 (1970), 1 – 63. · Zbl 0193.46901 · doi:10.1137/1012001 · doi.org
[101] John H. Halton, Estimating the accuracy of quasi-Monte Carlo integration, Applications of number theory to numerical analysis (Proc. Sympos., Univ. Montréal, Montreal, Que., 1971) Academic Press, New York, 1972, pp. 345 – 360.
[102] J. H. Halton and G. B. Smith, Algorithm 247: Radical-inverse quasi-random point sequence [G5], Comm. ACM 7 (1964), 701-702.
[103] J. H. Halton and S. C. Zaremba, The extreme and \?² discrepancies of some plane sets, Monatsh. Math. 73 (1969), 316 – 328. · Zbl 0183.31401 · doi:10.1007/BF01298982 · doi.org
[104] H. C. Hamaker, A simple technique for producing random sampling numbers, Nederl. Akad. Wetensch., Proc. 52 (1949), 145 – 150.
[105] J. M. Hammersley, Monte Carlo methods for solving multivariable problems, Ann. New York Acad. Sci. 86 (1960), 844 – 874 (1960). · Zbl 0111.12405
[106] J. M. Hammersley and D. C. Handscomb, Monte Carlo methods, Methuen & Co., Ltd., London; Barnes & Noble, Inc., New York, 1965. · Zbl 0121.35503
[107] N. Harada, Optimal multipliers for the spectral test of uniform random number generators, Information Processing in Japan 14 (1974), 120-126. · Zbl 0303.65004
[108] G. H. Hardy and J. E. Littlewood, Notes on the theory of series. XXIV. A curious power-series, Proc. Cambridge Philos. Soc. 42 (1946), 85 – 90. · Zbl 0060.15705
[109] C. B. Haselgrove, A method for numerical integration, Math. Comp. 15 (1961), 323 – 337. · Zbl 0209.46902
[110] Gilbert Helmberg, Gleichverteilte Folgen in lokal kompakten Räumen, Math. Z. 86 (1964), 157 – 189 (German). · Zbl 0206.34202 · doi:10.1007/BF01111336 · doi.org
[111] Edmund Hlawka, Funktionen von beschränkter Variation in der Theorie der Gleichverteilung, Ann. Mat. Pura Appl. (4) 54 (1961), 325 – 333 (German). · Zbl 0103.27604 · doi:10.1007/BF02415361 · doi.org
[112] Edmund Hlawka, Über die Diskrepanz mehrdimensionaler Folgen \?\?\?1, Math. Z. 77 (1961), 273 – 284 (German). · Zbl 0112.27803 · doi:10.1007/BF01180179 · doi.org
[113] Edmund Hlawka, Zur angenäherten Berechnung mehrfacher Integrale, Monatsh. Math. 66 (1962), 140 – 151 (German). · Zbl 0105.04603 · doi:10.1007/BF01387711 · doi.org
[114] Edmund Hlawka, Lösung von Integralgleichungen mittels zahlentheoretischer Methoden. I, Österreich. Akad. Wiss. Math.-Nat. Kl. S.-B. II 171 (1962), 103 – 123 (German). · Zbl 0125.06104
[115] Edmund Hlawka, Discrepancy and uniform distribution of sequences, Compositio Math. 16 (1964), 83 – 91 (1964). · Zbl 0139.27903
[116] Edmund Hlawka, Uniform distribution modulo 1 and numerical analysis, Compositio Math. 16 (1964), 92 – 105 (1964). · Zbl 0146.27602
[117] E. Hlawka, Trigonometrische Interpolation bei Funktionen von mehreren Variablen, Acta Arith. 9 (1964), 305 – 320 (German). · Zbl 0178.37505
[118] E. Hlawka, Interpolation analytischer Funktionen auf dem Einheitskreis, Number Theory and Analysis (Papers in Honor of Edmund Landau), Plenum, New York, 1969, pp. 97 – 118 (German).
[119] Edmund Hlawka, Zur Definition der Diskrepanz, Acta Arith. 18 (1971), 233 – 241 (German). · Zbl 0218.10063
[120] Edmund Hlawka, Discrepancy and Riemann integration, Studies in Pure Mathematics (Presented to Richard Rado), Academic Press, London, 1971, pp. 121 – 129.
[121] Edmund Hlawka, Über eine Methode von E. Hecke in der Theorie der Gleichverteilung, Acta Arith. 24 (1973), 11 – 31 (German). Collection of articles dedicated to Carl Ludwig Siegel on the occasion of his seventy-fifth birthday, I. · Zbl 0231.10029
[122] Edmund Hlawka, Anwendung zahlentheoretischer Methoden auf Probleme der numerischen Mathematik. I, Österreich. Akad. Wiss. Math.-Naturwiss. Kl. S.-B. II 184 (1975), no. 5-7, 217 – 225 (German). · Zbl 0377.65022
[123] Edmund Hlawka, Numerische analytische Fortsetzung in Polyzylindern, Österreich. Akad. Wiss. Math.-Naturwiss. Kl. S.-B. II 184 (1975), no. 5 – 7, 307 – 331 (German). · Zbl 0354.32020
[124] E. Hlawka and K. Kreiter, Lösung von Integralgleichungen mittels zahlentheoretischer Methoden. II, Österreich. Akad. Wiss. Math.-Natur. Kl. S.-B. II 172 (1963), 229 – 250 (German). · Zbl 0137.30602
[125] E. Hlawka and R. Mück, A transformation of equidistributed sequences, Applications of number theory to numerical analysis (Proc. Sympos., Univ. Montréal, Montreal, Que., 1971) Academic Press, New York, 1972, pp. 371 – 388. · Zbl 0245.10038
[126] E. Hlawka and R. Mück, Über eine Transformation von gleichverteilten Folgen. II, Computing (Arch. Elektron. Rechnen) 9 (1972), 127 – 138 (German, with English summary). · Zbl 0245.10039
[127] E. W. Hobson, The theory of functions of a real variable and the theory of Fourier’s series, vol. 1, 3rd ed., Cambridge Univ. Press, London, 1927. · JFM 53.0226.01
[128] L. C. Hsu, Concerning the numerical integration of periodic functions of several variables, Acta Sci. Math. Szeged 20 (1959), 230 – 233. · Zbl 0096.04401
[129] L. C. Hsu, Note on the numerical integration of periodic functions and of partially periodic functions, Numer. Math. 3 (1961), 169 – 173. · Zbl 0104.28401 · doi:10.1007/BF01386015 · doi.org
[130] Loo-keng Hua and Yuan Wang, Remarks concerning numerical integration, Sci. Record (N. S.) 4 (1960), 8 – 11. · Zbl 0090.34503
[131] Hua Lo-keng and Yuan Wang, Shu-chih chi-fen chi ch’i yin-yung, Second printing of the 1963 edition, Science Press, Peking, 1965 (Chinese).
[132] Loo Keng Hua and Yuan Wang, On Diophantine approximations and numerical integrations. I, II, Sci. Sinica 13 (1964), 1007-1009; ibid. 13 (1964), 1009 – 1010. · Zbl 0214.41603
[133] Hua Loo Keng and Yuan Wang, On numerical integration of periodic functions of several variables, Sci. Sinica 14 (1965), 964 – 978. · Zbl 0196.49203
[134] L.-K. Hua and Y. Wang, On uniform distribution and numerical analysis (Number-theoretic method). I, II, III, Sci. Sinica 16 (1973), 483-505; 17 (1974), 331-348; 18 (1975), 184-198. · Zbl 0343.10034
[135] T. E. Hull and A. R. Dobell, Random number generators, SIAM Rev. 4 (1962), 230 – 254. · Zbl 0111.14701 · doi:10.1137/1004061 · doi.org
[136] David W. Hutchinson, A new uniform pseudorandom number generator, Comm. ACM 9 (1966), 432 – 433. · Zbl 0141.14603 · doi:10.1145/365696.365712 · doi.org
[137] R. Iglisch, Zum Aufbau der Wahrscheinlichkeitsrechnung, Math. Ann. 107 (1932), 471-484. · JFM 58.0542.02
[138] Masatugu Isida and Hiroji Ikeda, Random number generator, Ann. Inst. Statist. Math., Tokyo 8 (1956), 119 – 126. · Zbl 0075.28903
[139] M. I. Israilov and T. S. Maksudov, Cubature formulae for singular integrals with Hilbert kernel on the class of functions \?_\?^\?, Dokl. Akad. Nauk UzSSR 8 (1974), 10 – 12 (Russian, with Uzbek summary).
[140] D. L. Jagerman, Some theorems concerning pseudo-random numbers, Math. Comp. 19 (1965), 418 – 426. · Zbl 0154.04803
[141] Birger Jansson, Autocorrelations between pseudo-random numbers, Nordisk Tidskr. Informations-Behandling 4 (1964), 6 – 27. · Zbl 0134.14706
[142] Birger Jansson, Random number generators, Almqvist & Wiksell, Stockholm, 1966. · Zbl 0154.43902
[143] D. L. Johnson, Generating and testing pseudo random numbers on the IBM Type 701, Math. Tables Aids Comput. 10 (1956), 8 – 13. · Zbl 0072.35705
[144] M. Kadyrov, Tables of random numbers, Izdat. Sredne-Aziatkogo Gos. Univ., Taškent, 1936. (Russian)
[145] Teturo Kamae, Subsequences of normal sequences, Israel J. Math. 16 (1973), 121 – 149. · Zbl 0272.28012 · doi:10.1007/BF02757864 · doi.org
[146] Teturo Kamae and Benjamin Weiss, Normal numbers and selection rules, Israel J. Math. 21 (1975), no. 2-3, 101 – 110. Conference on Ergodic Theory and Topological Dynamics (Kibbutz Lavi, 1974). · Zbl 0327.28014 · doi:10.1007/BF02760789 · doi.org
[147] G. Kedem, The search for good lattice points in N dimensions, Technical Report no. 1570, Math. Research Center, Madison, Wis., 1975.
[148] Gershon Kedem and S. K. Zaremba, A table of good lattice points in three dimensions, Numer. Math. 23 (1974), 175 – 180. · Zbl 0288.65006 · doi:10.1007/BF01459950 · doi.org
[149] M. G. Kendall and B. Babington Smith, Random sampling numbers, Tracts for Computers, no. 24, Cambridge Univ. Press, London, 1939. · Zbl 0024.42902
[150] J. Kiefer, On large deviations of the empiric D. F. of vector chance variables and a law of the iterated logarithm, Pacific J. Math. 11 (1961), 649 – 660. · Zbl 0119.34904
[151] G. W. King, The Monte Carlo method as a natural mode of expression in operations research, J. Operations Res. Soc. Amer. 1 (1953), 46-51.
[152] Peter Kirschenmann, Concepts of randomness, Proceedings of the First Symposium on Exact Philosophy (McGill Univ., Montreal, Que., 1971), 1972, pp. 395 – 414. · Zbl 0268.60001 · doi:10.1007/BF00255569 · doi.org
[153] Donald E. Knuth, Construction of a random sequence, Nordisk Tidskr. Informations-Behandling 5 (1965), 246 – 250. · Zbl 0134.35701
[154] Donald E. Knuth, The art of computer programming, 2nd ed., Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1975. Volume 1: Fundamental algorithms; Addison-Wesley Series in Computer Science and Information Processing. · Zbl 0357.68001
[155] Donald E. Knuth, Notes on generalized Dedekind sums, Acta Arith. 33 (1977), no. 4, 297 – 325. · Zbl 0326.10007
[156] J. F. Koksma, A general theorem from the theory of uniform distribution modulo 1, Mathematica, Zutphen. B. 11 (1942), 7 – 11 (Dutch). · Zbl 0026.38803
[157] J. F. Koksma, Some theorems on Diophantine inequalities, Scriptum no. 5, Math. Centrum Amsterdam, 1950. · Zbl 0038.02803
[158] A. N. Kolmogorov, On tables of random numbers, Sankhyā Ser. A 25 (1963), 369 – 376. · Zbl 0126.33203
[159] A. N. Kolmogorov, Three approaches to the definition of the concept ”quantity of information”, Problemy Peredači Informacii 1 (1965), no. vyp. 1, 3 – 11 (Russian). · Zbl 0271.94018
[160] N. M. Korobov, Approximate calculation of repeated integrals by number-theoretical methods, Dokl. Akad. Nauk SSSR (N.S.) 115 (1957), 1062 – 1065 (Russian). · Zbl 0080.04601
[161] N. M. Korobov, Approximate evaluation of repeated integrals, Dokl. Akad. Nauk SSSR 124 (1959), 1207 – 1210 (Russian). · Zbl 0089.04201
[162] N. M. Korobov, On some number-theoretic methods for the approximate computation of multiple integrals, Uspehi Mat. Nauk 14 (1959), no. 2, 227-230. (Russian)
[163] N. M. Korobov, Computation of multiple integrals by the method of optimal coefficients, Vestnik Moskov. Univ. Ser. Mat. Meh. Astr. Fiz. Him. 1959 (1959), no. 4, 19 – 25 (Russian).
[164] N. M. Korobov, Approximate solution of integral equations, Dokl. Akad. Nauk SSSR 128 (1959), 235 – 238 (Russian). · Zbl 0089.04202
[165] N. M. Korobov, Properties and calculation of optimal coefficients, Soviet Math. Dokl. 1 (1960), 696 – 700. · Zbl 0094.11204
[166] N. M. Korobov, Application of number-theoretical sieves to integral equations and interpolation formulas, Trudy Mat. Inst. Steklov. 60 (1961), 195 – 210 (Russian).
[167] N. M. Korobov, On applications of number-theoretic nets, Computational Methods and Programming, Izdat. Moskov. Gos. Univ., Moscow, 1962, pp. 80-102. (Russian)
[168] N. M. Korobov, On number-theoretic methods in approximate analysis, Probl. Numer. Math. Comp. Techn. (Russian), Gosudarstv. Naučno-Tehn. Izdat. Mašinostr. Lit., Moscow, 1963, pp. 36 – 44 (Russian).
[169] Теоретико-числовые методы в приближенном анализе, Государств. Издат. Физ.-Мат. Лит., Мосцощ, 1963 (Руссиан). · Zbl 0115.11703
[170] N. M. Korobov, Some problems in the theory of diophantine approximation, Uspehi Mat. Nauk 22 (1967), no. 3, 83-118 = Russian Math. Surveys 22 (1967), no. 3, 80-118. · Zbl 0178.04603
[171] N. M. Korobov, Trigonometric sums with exponential functions, and the distribution of the digits in periodic fractions, Mat. Zametki 8 (1970), 641 – 652 (Russian). · Zbl 0223.10025
[172] N. M. Korobov, The distribution of digits in periodic fractions, Mat. Sb. (N.S.) 89(131) (1972), 654 – 670, 672 (Russian). · Zbl 0248.10007
[173] Vladimir Ivanovich Krylov, Approximate calculation of integrals, Translated by Arthur H. Stroud, The Macmillan Co., New York-London, 1962, 1962.
[174] L. Kuipers and H. Niederreiter, Uniform distribution of sequences, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974. Pure and Applied Mathematics. · Zbl 0281.10001
[175] R.-D. Kulle and A. Reich, Flächenmessung mit gleichverteilten Folgen, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II (1973), 217 – 225 (German). · Zbl 0287.60017
[176] D. H. Lehmer, Mathematical methods in large-scale computing units, Proceedings of a Second Symposium on Large-Scale Digital Calculating Machinery, 1949, Harvard University Press, Cambridge, Mass., 1951, pp. 141 – 146.
[177] W. J. Leveque, An inequality connected with Weyl’s criterion for uniform distribution, Proc. Sympos. Pure Math., Vol. VIII, Amer. Math. Soc., Providence, R.I., 1965, pp. 22 – 30. · Zbl 0136.33901
[178] L. A. Levin, The concept of a random sequence, Dokl. Akad. Nauk SSSR 212 (1973), 548 – 550 (Russian).
[179] L. A. Levin, Uniform tests for randomness, Dokl. Akad. Nauk SSSR 227 (1976), no. 1, 33 – 35 (Russian).
[180] M. B. Levin, The uniform distribution of the sequence \?\?^\?, Mat. Sb. (N.S.) 98(140) (1975), no. 2 (10), 207 – 222, 333 (Russian).
[181] P. A. W. Lewis, A. S. Goodman and J. M. Miller, A pseudo-random number generator for the System/360, IBM Systems J. 8 (1969), 136-146.
[182] T. G. Lewis, Distribution sampling for computer simulation, Lexington Books, Farnborough, 1975. · Zbl 0335.65002
[183] Werner Liniger, On a method by D. H. Lehmer for the generation of pseudo random numbers, Numer. Math. 3 (1961), 265 – 270. · Zbl 0100.33702 · doi:10.1007/BF01386027 · doi.org
[184] M. Donald MacLaren and George Marsaglia, Uniform random number generators, J. Assoc. Comput. Mach. 12 (1965), 83 – 89. · Zbl 0143.40101 · doi:10.1145/321250.321257 · doi.org
[185] Dominique Maisonneuve, Recherche et utilisation des ”bons treillis”. Programmation et résultats numériques, Applications of number theory to numerical analysis (Proc. Sympos., Univ. Montréal, Montreal, Que., 1971) Academic Press, New York, 1972, pp. 121 – 201 (French, with English summary). · Zbl 0264.65026
[186] George Marsaglia, Random numbers fall mainly in the planes, Proc. Nat. Acad. Sci. U.S.A. 61 (1968), 25 – 28. · Zbl 0172.21002
[187] George Marsaglia, Regularities in congruential random number generators, Numer. Math. 16 (1970/1971), 8 – 10. · Zbl 0212.18204 · doi:10.1007/BF02162401 · doi.org
[188] George Marsaglia, The structure of linear congruential sequences, Applications of number theory to numerical analysis (Proc. Sympos., Univ. Montreal, Montreal, Que., 1971) Academic Press, New York, 1972, pp. 249 – 285.
[189] George Marsaglia and T. A. Bray, One-line random number generators and their use in combinations, Comm. ACM 11 (1968), 757 – 759. · Zbl 0164.18802 · doi:10.1145/364139.364158 · doi.org
[190] F. F. Martin, Computer modeling and simulation, Wiley, New York, 1968. · Zbl 0176.16903
[191] Per Martin-Löf, The definition of random sequences, Information and Control 9 (1966), 602 – 619. · Zbl 0244.62008
[192] Per Martin-Löf, The literature on von Mises’ Kollektivs revisited, Theoria 35 (1969), 12 – 37. · Zbl 0198.23103 · doi:10.1111/j.1755-2567.1969.tb00357.x · doi.org
[193] J. Maurin, Simulation déterministe du hasard, Masson & Cie, Éditeurs, Paris, 1975. · Zbl 0354.65004
[194] P. McShane, Randomness, statistics and emergence, Univ. of Notre Dame Press, Notre Dame, Ind., 1970. · Zbl 0322.60001
[195] H. G. Meijer, The discrepancy of a \?-adic sequence, Nederl. Akad. Wetensch. Proc. Ser. A 71=Indag. Math. 30 (1968), 54 – 66. · Zbl 0155.37801
[196] H. G. Meijer and H. Niederreiter, Équirépartition et théorie des nombres premiers, Répartition modulo 1 (Actes Colloq., Marseille-Luminy, 1974) Springer, Berlin, 1975, pp. 104 – 112. Lecture Notes in Math., Vol. 475 (French).
[197] Michel Mendès France, Calcul des moyennes des fonctions aléatoires ou pseudo-aléatoires par échantillonnage, Publ. Inst. Statist. Univ. Paris 11 (1962), 225 – 256 (French). · Zbl 0111.32901
[198] Michel Mendès France, Les suites additives et leur répartition (\?\?\?. 1), Séminaire de Théorie des Nombres, 1973 – 1974 (Univ. Bordeaux I, Talence), Exp. No. 8, Lab. Théorie des Nombres, Centre Nat. Recherche Sci., Talence, 1974, pp. 6 (French). · Zbl 0321.10042
[199] Nicholas Metropolis and S. Ulam, The Monte Carlo method, J. Amer. Statist. Assoc. 44 (1949), 335 – 341. · Zbl 0033.28807
[200] H. A. Meyer , Symposium on Monte Carlo methods, Wiley, New York, 1956. · Zbl 0070.13402
[201] G. Arthur Mihram, Simulation. Statistical foundations and methodology, Academic Press, New York-London, 1972. Mathematics in Science and Engineering, Vol. 92. · Zbl 0258.65006
[202] Osamu Miyatake, Generation of uniform random numbers of good quality, Math. Japon. 17 (1972), 79 – 84. · Zbl 0244.65004
[203] Osamu Miyatake, Hikaru Inoue, and Yasukazu Yoshizawa, Generation of physical random numbers, Math. Japon. 20 (1975), no. 3, 207 – 217.
[204] L. J. Mordell, On the exponential sum \sum \?\?\(_{1}\)^\? \?\?\?(2\?\?(\?\?+\?\?^\?)/\?), Mathematika 19 (1972), 84 – 87. · Zbl 0245.10025 · doi:10.1112/S0025579300004976 · doi.org
[205] L. J. Mordell, A new type of exponential series, Quart. J. Math. Oxford Ser. (2) 23 (1972), 373 – 374. · Zbl 0245.10026 · doi:10.1093/qmath/23.4.373 · doi.org
[207] R. E. Nance and C. Overstreet, Jr., Bibliography 29: A bibliography on random number generation, Comput. Rev. 13 (1972), 495-508.
[208] T. H. Naylor, Bibliography 19: Simulation and gaming, Comput. Rev. 10 (1969), 61-69.
[209] T. H. Naylor, J. L. Balintey and D. S. Burdick, Computer simulation techniques, Wiley, New York, 1966.
[210] H. Neunzert and J. Wick, Die Theorie der asymptotischen Verteilung und die numerische Lösung von Integrodifferentialgleichungen, Numer. Math. 21 (1973/74), 234 – 243 (German, with English summary). · Zbl 0283.65068 · doi:10.1007/BF01436627 · doi.org
[211] H. Neunzert and J. Wick, Die Darstellung von Funktionen mehrerer Variabler durch Punktmengen, Report no. 996-MA, Kernforschungsanlage Jülich (West Germany), 1973. · Zbl 0283.65068
[212] H. Neunzert and J. Wick, Die Approximation der Lösung von Integro-Differentialgleichungen durch endliche Punktmengen, Numerische Behandlung nichtlinearer Integrodifferential- und Differentialgleichungen (Tagung, Math. Forschungsinst., Oberwolfach, 1973), Springer, Berlin, 1974, pp. 275 – 290. Lecture Notes in Math., Vol. 395 (German). · Zbl 0324.76062
[213] T. G. Newman and P. L. Odell, The generation of random variates, Hafner, New York, 1971. · Zbl 0229.62059
[214] Harald Niederreiter, Diskrepanz in kompakten abelschen Gruppen. II, Manuscripta Math. 1 (1969), 293 – 306 (German, with English summary). · Zbl 0185.11102 · doi:10.1007/BF01626600 · doi.org
[215] H. Niederreiter, Discrepancy and convex programming, Ann. Mat. Pura Appl. (4) 93 (1972), 89 – 97. · Zbl 0281.10027 · doi:10.1007/BF02412017 · doi.org
[216] H. Niederreiter, On a number-theoretical integration method, Aequationes Math. 8 (1972), 304 – 311. · Zbl 0252.65023 · doi:10.1007/BF01844507 · doi.org
[217] H. Niederreiter, Methods for estimating discrepancy, Applications of number theory to numerical analysis (Proc. Sympos., Univ. Montréal, Montreal, Que., 1971) Academic Press, New York, 1972, pp. 203 – 236.
[218] Harald Niederreiter, On the distribution of pseudo-random numbers generated by the linear congruential method, Math. Comp. 26 (1972), 793 – 795. · Zbl 0258.65004
[219] H. Niederreiter, Metric theorems on the distribution of sequences, Analytic number theory (Proc. Sympos. Pure Math., Vol. XXIV, St. Louis Univ., St. Louis, Mo., 1972) Amer. Math. Soc., Providence, R.I., 1973, pp. 195 – 212.
[220] H. Niederreiter, Application of Diophantine approximations to numerical integration, Diophantine approximation and its applications (Proc. Conf., Washington, D.C., 1972) Academic Press, New York, 1973, pp. 129 – 199.
[221] Harald Niederreiter, On the distribution of pseudo-random numbers generated by the linear congruential method. II, Math. Comp. 28 (1974), 1117 – 1132. , https://doi.org/10.1090/S0025-5718-1974-0457391-8 Harald Niederreiter, On the distribution of pseudo-random numbers generated by the linear congruential method. III, Math. Comp. 30 (1976), no. 135, 571 – 597. · Zbl 0303.65003
[222] H. Niederreiter, Quantitative versions of a result of Hecke in the theory of uniform distribution \?\?\?1, Acta Arith. 28 (1975/76), no. 3, 321 – 339. · Zbl 0318.10037
[223] H. Niederreiter, Résultats nouveaux dans la théorie quantitative de l’équirépartition, Répartition modulo 1 (Actes Colloq., Marseille-Luminy, 1974) Springer, Berlin, 1975, pp. 132 – 154. Lecture Notes in Math., Vol. 475 (French).
[224] H. Niederreiter, Some new exponential sums with applications to pseudo-random numbers, Topics in number theory (Proc. Colloq., Debrecen, 1974) North-Holland, Amsterdam, 1976, pp. 209 – 232. Colloq. Math. Soc. János Bolyai, Vol. 13.
[225] H. Niederreiter, On the cycle structure of linear recurring sequences, Math. Scand. 38 (1976), no. 1, 53 – 77. · Zbl 0325.12007 · doi:10.7146/math.scand.a-11616 · doi.org
[226] Harald Niederreiter, On the distribution of pseudo-random numbers generated by the linear congruential method. II, Math. Comp. 28 (1974), 1117 – 1132. , https://doi.org/10.1090/S0025-5718-1974-0457391-8 Harald Niederreiter, On the distribution of pseudo-random numbers generated by the linear congruential method. III, Math. Comp. 30 (1976), no. 135, 571 – 597. · Zbl 0303.65003
[227] Harald Niederreiter, Statistical independence of linear congruential pseudo-random numbers, Bull. Amer. Math. Soc. 82 (1976), no. 6, 927 – 929. · Zbl 0348.65005
[228] Harald Niederreiter, Weights of cyclic codes, Information and Control 34 (1977), no. 2, 130 – 140. · Zbl 0357.94008
[229] Harald Niederreiter, Pseudo-random numbers and optimal coefficients, Advances in Math. 26 (1977), no. 2, 99 – 181. · Zbl 0366.65004 · doi:10.1016/0001-8708(77)90028-7 · doi.org
[230] Harald Niederreiter, The serial test for linear congruential pseudo-random numbers, Bull. Amer. Math. Soc. 84 (1978), no. 2, 273 – 274. · Zbl 0388.65005
[231] Harald Niederreiter, Existence of good lattice points in the sense of Hlawka, Monatsh. Math. 86 (1978/79), no. 3, 203 – 219. · Zbl 0395.10053 · doi:10.1007/BF01659720 · doi.org
[232] H. Niederreiter, A quasi-Monte Carlo method for the approximate computation of the extreme values of a function, Studies in pure mathematics, Birkhäuser, Basel, 1983, pp. 523 – 529. · Zbl 0527.65041
[233] H. Niederreiter, The serial test for pseudo-random numbers generated by the linear congruential method (in preparation). · Zbl 0388.65005
[234] H. Niederreiter and Walter Philipp, Berry-Esseen bounds and a theorem of Erdős and Turán on uniform distribution \?\?\?1, Duke Math. J. 40 (1973), 633 – 649. · Zbl 0273.10043
[235] Heiner Niederreiter and Jörg M. Wills, Diskrepanz und Distanz von Maßen bezüglich konvexer und Jordanscher Mengen, Math. Z. 144 (1975), no. 2, 125 – 134 (German). · Zbl 0295.28028 · doi:10.1007/BF01190941 · doi.org
[236] S. M. Nikol’skiĭ, Quadrature formulae, Fizmatgiz, Moscow, 1958 = Hindustan Publ. Corp., Delhi, 1964.
[237] Octav Onicescu, Nombres et systèmes aléatoires, Éditions de l’ Académie de la R. P. Roumaine, Bucharest; Éditions Eyrolles, Paris, 1964 (French). · Zbl 0231.06004
[238] W. H. Payne, Fortran Tausworthe pseudorandom number generator, Comm. ACM 13 (1970), 57.
[239] W. H. Payne, J. R. Rabung and T. P. Bogyo, Coding the Lehmer pseudo-random number generator, Comm. ACM 12 (1969), 85-86. · Zbl 0167.45802
[240] L. G. Peck, On uniform distribution of algebraic numbers, Proc. Amer. Math. Soc. 4 (1953), 440 – 443. · Zbl 0050.27601
[241] Oskar Perron, Die Lehre von den Kettenbrüchen. Bd I. Elementare Kettenbrüche, B. G. Teubner Verlagsgesellschaft, Stuttgart, 1954 (German). 3te Aufl. · JFM 43.0283.04
[242] Walter Philipp, Das Gesetz vom iterierten Logarithmus mit Anwendungen auf die Zahlentheorie, Math. Ann. 180 (1969), 75 – 94 (German). · Zbl 0164.05601 · doi:10.1007/BF01350087 · doi.org
[243] Walter Philipp, Mixing sequences of random variables and probablistic number theory, American Mathematical Society, Providence, R. I., 1971. Memoirs of the American Mathematical Society, No. 114. · Zbl 0224.10052
[244] Walter Philipp, Empirical distribution functions and uniform distribution \?\?\?1, Diophantine approximation and its application (Proc. Conf., Washington, D.C., 1972) Academic Press, New York, 1973, pp. 211 – 234.
[245] Ju. G. Polljak, On the analysis of pseudo-random numbers, Avtomat. i Vyčisl. Tehn. 1968 (1968), no. 5, 31 – 35 (Russian).
[246] K. Popper, Logik der Forschung: Zur Erkenntnistheorie der modernen Naturwissenschaft, Springer, Vienna, 1935. · Zbl 0010.24202
[247] A. G. Postnikov, Arithmetic modeling of random processes, Trudy Mat. Inst. Steklov. 57 (1960), 84 (Russian).
[248] A. G. Postnikov, Ergodic problems in the theory of congruences and of Diophantine approximations, Proceedings of the Steklov Institute of Mathematics, No. 82 (1966). Translated from the Russian by B. Volkmann, American Mathematical Society, Providence, R.I., 1967. · Zbl 0178.04702
[249] P. D. Proĭnov, The square deviation of symmetric lattices, Vestnik Moskov. Univ. Ser. I Mat. Meh. 30 (1975), no. 2, 41 – 47 (Russian, with English summary).
[250] C. M. Rader, L. R. Rabiner and R. W. Schafer, A fast method of generating digital random numbers, Bell System Tech. J. 49 (1970), 2303-2310. · Zbl 0213.17601
[251] RAND Corporation, One million random digits and 100, 000 normal deviates, Free Press, Glencoe, III., 1955.
[252] Gérard Rauzy, Fonctions entières et répartition modulo un. II, Bull. Soc. Math. France 101 (1973), 185 – 192 (French). · Zbl 0269.10029
[253] Hans Reichenbach, Axiomatik der Wahrscheinlichkeitsrechnung, Math. Z. 34 (1932), no. 1, 568 – 619 (German). · Zbl 0003.35401 · doi:10.1007/BF01180610 · doi.org
[254] R. D. Richtmyer, On the evaluation of definite integrals and a quasi-Monte Carlo method based on properties of algebraic numbers, Report LA-1342, Los Alamos Sci. Lab., Los Alamos, N.M., 1951.
[255] R. D. Richtmyer, A non-random sampling method based on congruences for Monte-Carlo problems, AEC Research and Development Rep. NYO-8674, AEC Comp. Appl. Math. Center, New York Univ., New York, 1958.
[256] R. D. Richtmyer, Marjorie Devaney, and N. Metropolis, Continued fraction expansions of algebraic numbers, Numer. Math. 4 (1962), 68 – 84. · Zbl 0101.28101 · doi:10.1007/BF01386297 · doi.org
[257] V. S. Rjaben\(^{\prime}\)kiĭ, Tables and interpolation of a certain class of functions, Soviet Math. Dokl. 1 (1960), 382 – 384.
[258] V. S. Rjaben\(^{\prime}\)kiĭ, A way of obtaining difference schemes and the use of number-theoretic nets for the solution of the Cauchy problem by the method of finite differences, Trudy Mat. Inst. Steklov. 60 (1961), 232 – 237 (Russian).
[259] P. Roos and L. Arnold, Numerische Experimente zur mehrdimensionalen Quadratur, Österreich. Akad. Wiss. Math.-Natur. Kl. S.-B. II 172 (1963), 271 – 286 (German). · Zbl 0128.36902
[260] M. Rosenblatt, Multiply schemes and shuffling, Math. Comput. 29 (1975), 929 – 934. · Zbl 0322.65004
[261] K. F. Roth, On irregularities of distribution, Mathematika 1 (1954), 73 – 79. · Zbl 0057.28604 · doi:10.1112/S0025579300000541 · doi.org
[262] K. F. Roth, On irregularities of distribution. II, Comm. Pure Appl. Math. 29 (1976), no. 6, 739 – 744. · Zbl 0327.60019 · doi:10.1002/cpa.3160290614 · doi.org
[263] K. F. Roth, On irregularities of distribution. IV, Acta Arith. 37 (1980), 67 – 75. · Zbl 0425.10057
[264] K. F. Roth, On irregularities of distribution. II, Comm. Pure Appl. Math. 29 (1976), no. 6, 739 – 744. · Zbl 0327.60019 · doi:10.1002/cpa.3160290614 · doi.org
[265] Yu. N. Šahov, Approximate solution of second kind Volterra equation by means of iterations, Dokl. Akad. Nauk SSSR 128 (1959), 1136 – 1139 (Russian). · Zbl 0087.30801
[266] Ju. N. Šahov, The approximate solution of Volterra equations of the second kind by the method of iterations, Soviet Math. Dokl. 2 (1961), 206 – 209. · Zbl 0098.31601
[267] Ju. N. Šahov, On the calculation of the eigenvalues of a higher-dimensional symmetric kernel by means of number-theoretic grids, Ž. Vyčisl. Mat. i Mat. Fiz. 3 (1963), 988 – 997 (Russian).
[268] Ju. N. Šahov, On the approximate solution of higher-dimensional linear Volterra equations of second kind by an iteration method, Ž. Vyčisl. Mat. i Mat. Fiz. 4 (1964), no. 4, suppl., 75 – 100 (Russian).
[269] Ju. N. Šahov, The calculation of integrals of increasing multiplicity, Ž. Vyčisl. Mat. i Mat. Fiz. 5 (1965), no. 5, 911 – 916 (Russian).
[270] Ju. N. Šahov, The error in the reconstruction of a certain class of functions from parallelepipedal nets, Mat. Zametki 15 (1974), 749 – 756 (Russian).
[271] Michel Saint-André, Calcul de la moyenne d’une fonction presque-périodique application au calcul d’intégrales, Rev. Française Informat. Recherche Opérationnelle 4 (1970), no. Sér. R-3, 141 – 146 (French). · Zbl 0241.65026
[272] Michel Saint-André, Détermination d’un vecteur optimal pour le calcul d’intégrales (simples ou multiples), Rev. Française Informat. Recherche Opérationnelle 5 (1971), no. Sér. R-2, 141 – 149 (French). · Zbl 0225.65029
[273] Gerhart Bruckmann, Franz Ferschl, and Leopold Schmetterer , Compstat 1974, Physica Verlag, Vienna, 1974. · Zbl 0361.62002
[274] A. I. Saltykov, Tables for evaluating multiple integrals by the method of optimal coefficients, Ž. Vyčisl. Mat. i Mat. Fiz. 3 (1963), 181 – 186 (Russian).
[275] I. F. Šarygin, The use of number theoretic methods of integration in the case of non-periodic functions, Soviet Math. Dokl. 1 (1960), 506 – 509. · Zbl 0099.33701
[276] I. F. Šarygin, Lower bounds for the error of quadrature formulas on classes of functions, Ž. Vyčisl. Mat. i Mat. Fiz. 3 (1963), 370 – 376 (Russian).
[277] Masahiko Sato, On the periods of certain pseudorandom sequences, Publ. Res. Inst. Math. Sci. 10 (1974/75), no. 1, 77 – 89. · Zbl 0301.65003 · doi:10.2977/prims/1195192173 · doi.org
[278] Klaus Schmidt, Über die \?-Gleichverteilung von Maßen, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 17 (1971), 327 – 332 (German). · Zbl 0197.32602 · doi:10.1007/BF00536302 · doi.org
[279] K. Schmidt and P. Zinterhof, Über Quadraturformeln auf \?^\?, Computing (Arch. Elektron. Rechnen) 6 (1970), 94 – 96 (German, with English summary). · Zbl 0216.48602
[280] Wolfgang M. Schmidt, Metrical theorems on fractional parts of sequences, Trans. Amer. Math. Soc. 110 (1964), 493 – 518. · Zbl 0199.09402
[281] Wolfgang M. Schmidt, Simultaneous approximation to algebraic numbers by rationals, Acta Math. 125 (1970), 189 – 201. · Zbl 0205.06702 · doi:10.1007/BF02392334 · doi.org
[282] Wolfgang M. Schmidt, Irregularities of distribution. VII, Acta Arith. 21 (1972), 45 – 50. · Zbl 0244.10035
[283] W. M. Schmidt, Lectures on irregularities of distribution, Lecture notes, Boulder, Co., 1973.
[284] Wolfgang M. Schmidt, Irregularities of distribution. IX, Acta Arith. 27 (1975), 385 – 396. Collection of articles in memory of Juriĭ Vladimirovič Linnik. Wolfgang M. Schmidt, Irregularities of distribution. X, Number theory and algebra, Academic Press, New York, 1977, pp. 311 – 329.
[285] Claus-Peter Schnorr, Zufälligkeit und Wahrscheinlichkeit. Eine algorithmische Begründung der Wahrscheinlichkeitstheorie, Lecture Notes in Mathematics, Vol. 218, Springer-Verlag, Berlin-New York, 1971. · Zbl 0232.60001
[286] C. S. Smith, Multiplicative pseudo-random number generators with prime modulus, J. Assoc. Comput. Mach. 18 (1971), 586 – 593. · Zbl 0227.65006 · doi:10.1145/321662.321673 · doi.org
[287] S. A. Smoljak, Interpolation and quadrature formulas for the classes \?_\?^\? and \?_\?^\?, Soviet Math. Dokl. 1 (1960), 384 – 387. · Zbl 0229.41011
[288] S. A. Smoljak, Quadrature and interpolation formulae on tensor products of certain function classes, Dokl. Akad. Nauk SSSR 148 (1963), 1042 – 1045 (Russian). · Zbl 0202.39901
[289] I. M. Sobol, Multidimensional integrals and the Monte-Carlo method, Dokl. Akad. Nauk SSSR (N.S.) 114 (1957), 706 – 709 (Russian). · Zbl 0091.14601
[290] I. M. Sobol\(^{\prime}\), Pseudo-random numbers for the machine ”Strela”, Teor. Veroyatnost. i Primenen. 3 (1958), 205 – 211 (Russian, with English summary).
[291] I. M. Sobol\(^{\prime}\), Accurate estimate of the error of multidimensional quadrature formulas for functions of class \?_\?, Soviet Math. Dokl. 1 (1960), 726 – 729. · Zbl 0122.30702
[292] I. M. Sobol\(^{\prime}\), An exact bound for the error of multivariate integration formulas for functions of classes \?\(_{1}\) and \?\(_{1}\), Ž. Vyčisl. Mat. i Mat. Fiz. 1 (1961), 208 – 216 (Russian).
[293] I. M. Sobol\(^{\prime}\), Evaluation of infinite-dimensional integrals, Ž. Vyčisl. Mat. i Mat. Fiz. 1 (1961), 917 – 922 (Russian).
[294] I. M. Sobol\(^{\prime}\), Evaluation of multiple integrals, Dokl. Akad. Nauk SSSR 139 (1961), 821 – 823 (Russian).
[295] I. M. Sobol\(^{\prime}\), Application of the \?²-distribution for an error bound in evaluating integrals by the Monte-Carlo method, Ž. Vyčisl. Mat. i Mat. Fiz. 2 (1962), 717 – 723 (Russian).
[296] I. M. Sobol\(^{\prime}\), The application of Haar series in the theory of quadrature formulae, Probl. Numer. Math. Comp. Techn. (Russian), Gosudarstv. Naučno-Tehn. Izdat. Mašinostr. Lit., Moscow, 1963, pp. 31 – 35 (Russian).
[297] I. M. Sobol\(^{\prime}\), Periods of pseudo-random sequences, Teor. Verojatnost. i Primenen. 9 (1964), 367 – 373 (Russian, with English summary).
[298] I. M. Sobol\(^{\prime}\), Distribution of points in a cube and integration nets, Uspehi Mat. Nauk 21 (1966), no. 5 (131), 271 – 272 (Russian).
[299] I. M. Sobol\(^{\prime}\), An integral occurring in the theory of quadrature formulae, Ž. Vyčisl. Mat. i Mat. Fiz. 6 (1966), 1084 – 1089 (Russian). · Zbl 0162.47803
[300] I. M. Sobol\(^{\prime}\), Distribution of points in a cube and approximate evaluation of integrals, Ž. Vyčisl. Mat. i Mat. Fiz. 7 (1967), 784 – 802 (Russian).
[301] I. M. Sobol\(^{\prime}\), The use of Haar’s series for an estimate of the error in the evaluation of infinite-dimensional integrals, Dokl. Akad. Nauk SSSR 175 (1967), 34 – 37 (Russian).
[302] I. M. Sobol’, A Monte Carlo method for critical calculation in multigroup approximation, The Monte Carlo Method in Problems of Radiation Transfer, Atomizdat, Moscow, 1967, pp. 232-254. (Russian)
[303] Многомерные квадратурные формулы и функции Хаара., Издат. ”Наука”, Мосцощ, 1969 (Руссиан). · Zbl 0195.16903
[304] I. M. Sobol’, On an approach to the computation of multiple integrals, Voprosy Vyčisl. i Prikl. Mat. (Taškent) 1970, no. 38, 100-111. (Russian)
[305] I. M. Sobol’, The problem of the minimum of \(\phi\infty\) in the three-dimensional cube, Voprosy Vyčisl. i Prikl. Mat. (Taškent) 1970, no. 38, 112-115. (Russian)
[306] Метод Монте-Карло, Издат. ”Наука”, Мосцощ, 1972 (Руссиан). Сецонд едитион, ревисед; Популар Лецтурес ин Матхематицс, Но. 46. · Zbl 0235.62003
[307] I. M. Sobol\(^{\prime}\), A deterministic interpretation of goodness-of-fit tests, and a test of pseudorandom numbers, Operations research and statistical modeling, No. 1 (Russian), Izdat. Leningrad. Univ., Leningrad, 1972, pp. 162 – 169 (Russian).
[308] I. M. Sobol’, A probabilistic estimate of the error for nonrandom integration nets, Voprosy Vyčisl. i Prikl. Mat. (Taskent) 1972, no. 14, 5-11. (Russian)
[309] Численные методы Монте-Карло., Издат. ”Наука”, Мосцощ, 1973 (Руссиан). · Zbl 0289.65001
[310] I. M. Sobol\(^{\prime}\), A probabilistic estimate of the integration error for \Pi _\?-grids, Ž. Vyčisl. Mat. i Mat. Fiz. 13 (1973), 1035 – 1037, 1093 (Russian).
[311] I. M. Sobol\(^{\prime}\), Computation of improper integrals by means of equidistributed sequences, Dokl. Akad. Nauk SSSR 210 (1973), 278 – 281 (Russian).
[312] I. M. Sobol\(^{\prime}\), Pseudorandom numbers for the construction of discrete Markov chains by a Monte Carlo method, Ž. Vyčisl. Mat. i Mat. Fiz. 14 (1974), 36 – 44, 266 (Russian).
[313] I. M. Sobol’, Infinite-dimensional uniformly distributed sequences in numerical mathematics, Preprint no. 22, Inst. Prikl. Mat. Akad. Nauk SSSR, Moscow, 1974. (Russian)
[314] I. M. Sobol’, On convergence of infinite-dimensional cubature and simulation of Markov chains, Voprosy Vyčisl. i Prikl. Mat. (Taškent) 1975, no. 32, 162-167. (Russian)
[315] I. M. Sobol\(^{\prime}\), Uniformly distributed sequences with an additional property of uniformity, Ž. Vyčisl. Mat. i Mat. Fiz. 16 (1976), no. 5, 1332 – 1337, 1375 (Russian). · Zbl 0379.40003
[316] I. M. Sobol’ and Ju. L. Levitan, Generation of points uniformly distributed in a multidimensional cube, Preprint no. 40, Inst. Prikl. Mat. Akad. Nauk SSSR, Moscow, 1976. (Russian)
[317] I. M. Sobol’ and R. B. Statnikov, LP-search and problems of optimal design, Problems of Random Search, vol. 1, Izdat. ”Zinatne”, Riga, 1972, pp. 117-135. (Russian)
[318] I. M. Sobol\(^{\prime}\), R. B. Statnikov, and N. F. Ovčinnikova, Locating the eigenvalues of a matrix, Ž. Vyčisl. Mat. i Mat. Fiz. 13 (1973), 1581 – 1583, 1638 (Russian). · Zbl 0297.65025
[319] V. M. Solodov, Computation of iterated integrals, Dokl. Akad. Nauk SSSR 127 (1959), 753 – 756 (Russian). · Zbl 0092.05902
[320] V. M. Solodov, On the error in numerical integration, Dokl. Akad. Nauk SSSR 148 (1963), 284 – 287 (Russian).
[321] V. M. Solodov, Integration over certain regions which are different from the unit cube, Ž. Vyčisl. Mat. i Mat. Fiz. 8 (1968), 1334 – 1341 (Russian). · Zbl 0176.46503
[322] V. M. Solodov, An application of the method of optimal coefficients to numerical integration, Ž. Vyčisl. Mat. i Mat. Fiz. 9 (1969), 14 – 29 (Russian). E. R. Sowey, A chronological and classified bibliography on random number generation and testing, Internat. Statist. Rev. 40 (1972), no. 3, 355 – 371.
[323] Jerome Spanier and Ely M. Gelbard, Monte Carlo principles and neutron transport problems, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969. · Zbl 0244.62004
[324] V. T. Stojancev, Indeterminate methods of integration with a finite number of possible formulas, Ž. Vyčisl. Mat. i Mat. Fiz. 9 (1969), 1235 – 1246 (Russian). · Zbl 0194.47104
[325] V. T. Stojancev, Solution of the Cauchy problem for a parabolic equation by a quasi Monte Carlo method, Ž. Vyčisl. Mat. i Mat. Fiz. 13 (1973), 1153 – 1160, 1362 (Russian).
[326] V. T. Stojancev, Solution of the Dirichlet problem by the quasi-Monte Carlo method, Uspehi Mat. Nauk 30 (1975), no. 1(181), 263 – 264 (Russian). · Zbl 0313.65108
[327] R. G. Stoneham, On a new class of multiplicative pseudo-random number generators, Nordisk Tidskr. Informationsbehandling (BIT) 10 (1970), 481 – 500. · Zbl 0217.52104
[328] R. G. Stoneham, On the uniform \epsilon -distribution of residues within the periods of rational fractions with applications to normal numbers, Acta Arith. 22 (1973), 371-389. · Zbl 0276.10029
[329] A. H. Stroud, Approximate calculation of multiple integrals, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1971. Prentice-Hall Series in Automatic Computation. · Zbl 0379.65013
[330] Winfried Stute, Convergence rates for the isotrope discrepancy, Ann. Probability 5 (1977), no. 5, 707 – 723. · Zbl 0382.60029
[331] Péter Szüsz, Über ein Problem der Gleichverteilung, Comptes Rendus du Premier Congrès des Mathématiciens Hongrois, 27 Août – 2 Septembre 1950, Akadémiai Kiadó, Budapest, 1952, pp. 461 – 472 (Hungarian, with Russian and German summaries). · Zbl 0048.28001
[332] Olga Taussky and John Todd, Generation and testing of pseudo-random numbers, Symposium on Monte Carlo methods, University of Florida, 1954, John Wiley and Sons, Inc., New York; Chapman and Hall, Limited, London, 1956, pp. 15 – 28.
[333] Robert C. Tausworthe, Random numbers generated by linear recurrence modulo two, Math. Comp. 19 (1965), 201 – 209. · Zbl 0137.34804
[334] Daniel Teichroew, A history of distribution sampling prior to the era of the computer and is relevance to simulation, J. Amer. Statist. Assoc. 60 (1965), 27 – 49. · Zbl 0127.35801
[335] L. H. C. Tippett, Random sampling numbers, Tracts for Computers, no. 15, Cambridge Univ. Press, London, 1927.
[336] K. D. Tocher, The application of automatic computers to sampling experiments, J. Roy. Statist. Soc. Ser. B. 16 (1954), 39 – 61; discussion 61 – 75. · Zbl 0055.36902
[337] J. P. R. Tootill, W. D. Robinson and A. G. Adams, The runs up-and-down performance of Tausworthe pseudo-random number generators, J. Assoc. Comput. Mach. 18 (1971), 381-399. · Zbl 0225.65012
[338] J. P. R. Tootill, W. D. Robinson and D. J. Eagle, An asymptotically random Tausworthe sequence, J. Assoc. Comput. Mach. 20 (1973), 469-481. · Zbl 0266.65008
[339] Takao Tsuda, Numerical integration of functions of very many variables, Numer. Math. 20 (1972/73), 377 – 391. · Zbl 0244.65018 · doi:10.1007/BF01402561 · doi.org
[340] Stanislaw M. Ulam, Monte Carlo calculations in problems of mathematical physics, Modern mathematics for the engineer: Second series, McGraw-Hill, New York, 1961, pp. 261 – 281.
[341] J. G. van der Corput, Verteilungsfunktionen. I, II, Nederl. Akad. Wetensch. Proc. 38 (1935), 813-821, 1058-1066. · JFM 61.0202.08
[342] A. van Gelder, Some new results in pseudo-random number generation, J. Assoc. Comput Mach. 14 (1967), 785-792. · Zbl 0152.35904
[343] Alfred J. van der Poorten, Reduction of continued fractions of formal power series, Continued fractions: from analytic number theory to constructive approximation (Columbia, MO, 1998) Contemp. Math., vol. 236, Amer. Math. Soc., Providence, RI, 1999, pp. 343 – 355. · Zbl 1017.11036 · doi:10.1090/conm/236/03505 · doi.org
[344] J. Venn, The logic of chance, Macmillan, London, 1876. · JFM 08.0111.03
[345] Peter H. Verdier, Relations within sequences of congruential pseudo-random numbers, J. Res. Nat. Bur. Standards Sect. B 73B (1969), 41 – 44. · Zbl 0181.21701
[346] I. V. Vilenkin, Plane nets of integration, Ž. Vyčisl. Mat. i Mat. Fiz. 7 (1967), 189 – 196 (Russian). · Zbl 0187.10701
[347] I. V. Vilenkin, More on plane nets of integration, Ž. Vyčisl. Mat. i Mat. Fiz. 13 (1973), 854 – 864, 1089 (Russian).
[348] J. Ville, Étude critique de la notion de collectif, Gauthier-Villars, Paris, 1939. · Zbl 0021.14505
[349] Sebastian von Hoerner, Herstellung von Zufallszahlen auf Rechenautomaten, Z. Angew. Math. Phys. 8 (1957), 26 – 52 (German). · Zbl 0077.11606 · doi:10.1007/BF01601153 · doi.org
[350] R. v. Mises, Grundlagen der Wahrscheinlichkeitsrechnung, Math. Z. 5 (1919), no. 1-2, 52 – 99 (German). · JFM 47.0483.01 · doi:10.1007/BF01203155 · doi.org
[351] Richard von Mises, Wahrscheinlichkeit, Statistik und Wahrheit, Springer-Verlag, Vienna-New York, 1972 (German). Vierte Auflage, durchgesehen von Hilda Geiringer; Library of Exact Philosophy, Vol. 7. · Zbl 0242.60001
[352] J. von Neumann, Various techniques used in connection with random digits, NBS Appl. Math. Series, no. 12, U. S. Government Printing Office, Washington, D. C., 1951, pp. 36-38 = Collected Works, vol. 5, Pergamon Press, Oxford, 1963, pp. 768-770.
[353] Ju. V. Voroncov and Ju. G. Polljak, On the use of quasirandom sequences in the direct probabilistic simulation of systems, Avt. i Vyčisl. Tehn. 1971, no. 6, 23-27. (Russian)
[354] J. E. Walsh, An experimental method for obtaining random digits and permutations, Sankhyā 17 (1957), 355-360. · Zbl 0079.34401
[355] Yuan Wang, A note on interpolation of a certain class of functions, Sci. Sinica 10 (1961), 632 – 636. · Zbl 0202.44004
[356] Y. Wang, On numerical integration and its applications (Number-theoretic method), Shuxue Jinzhan 5 (1962), no. 1, 1-44. (Chinese)
[357] Tony T. Warnock, Computational investigations of low-discrepancy point sets, Applications of number theory to numerical analysis (Proc. Sympos., Univ. Montreal, Montreal, Que., 1971) Academic Press, New York, 1972, pp. 319 – 343.
[358] Yoiti Watanabe, Canonical Hamiltonian formalism for dissipative systems, Sci. Rep. College Gen. Ed. Osaka Univ. 33 (1984), no. 2, 1 – 3 (1985). · Zbl 0576.35101
[359] W. J. Westlake, A uniform random number generator based on the combination of two congruential generators, J. Assoc. Comput. Mach. 14 (1967), 337-340.
[360] Brian E. White, Mean-square discrepancies of the Hammersley and Zaremba sequences for arbitrary radix, Monatsh. Math. 80 (1975), no. 3, 219 – 229. · Zbl 0322.65002 · doi:10.1007/BF01319918 · doi.org
[361] Brian E. White, On optimal extreme-discrepancy point sets in the square, Numer. Math. 27 (1976/77), no. 2, 157 – 164. · Zbl 0327.65029 · doi:10.1007/BF01396635 · doi.org
[362] John R. B. Whittlesey, A comparison of the correlational behavior of random number generators for the IBM 360, Comm. ACM 11 (1968), 641 – 644. · Zbl 0176.16902 · doi:10.1145/364063.364095 · doi.org
[363] J. R. B. Whittlesey, On the multidimensional uniformity of pseudorandom generators, Comm. ACM 12 (1969), 247.
[364] Andrew C. Yao and Donald E. Knuth, Analysis of the subtractive algorithm for greatest common divisors, Proc. Nat. Acad. Sci. U.S.A. 72 (1975), no. 12, 4720 – 4722. · Zbl 0315.10005
[365] S. C. Zaremba, Good lattice points, discrepancy, and numerical integration, Ann. Mat. Pura Appl. (4) 73 (1966), 293 – 317. · Zbl 0148.02602 · doi:10.1007/BF02415091 · doi.org
[366] S. C. Zaremba, Some applications of multidimensional integration by parts, Ann. Polon. Math. 21 (1968), 85 – 96. · Zbl 0174.08402
[367] S. C. Zaremba, Good lattice points in the sense of Hlawka and Monte Carlo integration, Monatsh. Math. 72 (1968), 264 – 269. · Zbl 0195.19501 · doi:10.1007/BF01362552 · doi.org
[368] S. C. Zaremba, The mathematical basis of Monte Carlo and quasi-Monte Carlo methods., SIAM Rev. 10 (1968), 303 – 314. · doi:10.1137/1010056 · doi.org
[369] S. C. Zaremba, A quasi-Monte Carlo method for computing double and other multiple integrals, Aequationes Math. 4 (1970), 11 – 22. · Zbl 0206.47002 · doi:10.1007/BF01817740 · doi.org
[370] S. K. Zaremba, La discrépance isotrope et l’intégration numérique, Ann. Mat. Pura Appl. 87 (1970), 125-136. · Zbl 0212.17601
[371] S. C. Zaremba, A remarkable lattice generated by Fibonacci numbers, Fibonacci Quart. 8 (1970), no. 2, 185 – 198. · Zbl 0213.05801
[372] S. K. Zaremba, Sur la discrépance des suites aléatoires, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 20 (1971), 236 – 248 (French). · Zbl 0212.20602 · doi:10.1007/BF00534905 · doi.org
[373] S. K. Zaremba, La méthode des ”bons treillis” pour le calcul des intégrales multiples, Applications of number theory to numerical analysis (Proc. Sympos., Univ. Montreal, Montreal, Que., 1971) Academic Press, New York, 1972, pp. 39 – 119 (French, with English summary).
[374] S. K. Zaremba, Good lattice points modulo primes and composite numbers, Diophantine approximation and its applications (Proc. Conf., Washington, D.C., 1972) Academic Press, New York, 1973, pp. 327 – 356.
[375] S. K. Zaremba, Good lattice points modulo composite numbers, Monatsh. Math. 78 (1974), 446 – 460. · Zbl 0292.10023 · doi:10.1007/BF01295488 · doi.org
[376] S. K. Zaremba, Computing the isotropic discrepancy of point sets in two dimensions, Discrete Math. 11 (1975), 79 – 92. · Zbl 0298.65021 · doi:10.1016/0012-365X(75)90107-7 · doi.org
[377] Stanisław K. Zaremba, L’erreur dans le calcul des intégrales doubles par la méthode des bons treillis, Demonstratio Math. 8 (1975), no. 3, 347 – 364 (French). · Zbl 0325.65013
[378] S. K. Zaremba, On Cartesian products of good lattices, Math. Comp. 30 (1976), no. 135, 546 – 552. · Zbl 0332.65015
[379] Neal Zierler, Linear recurring sequences, J. Soc. Indust. Appl. Math. 7 (1959), 31 – 48. · Zbl 0096.33804
[380] Ja. M. Žileĭkin, An approximate solution of the Dirichlet problem for the Laplace equation, Dokl. Akad. Nauk SSSR 155 (1964), 999 – 1002 (Russian).
[381] Ja. M. Žileĭkin, On the approximate solution of integral equations, Ž. Vyčisl. Mat. i Mat. Fiz 4 (1964), 749 – 753 (Russian).
[382] Ja. M. Žileĭkin, An approximate method of solution of the Dirichlet problem for the Laplace equation in a rectangular parallelopiped, Ž. Vyčisl. Mat. i Mat. Fiz. 5 (1965), 345 – 347 (Russian).
[383] Ja. M. Žileĭkin, Quadrature formulas on function classes, Ž. Vyčisl. Mat. i Mat. Fiz. 8 (1968), 507 – 516 (Russian).
[384] Peter Zinterhof, Einige zahlentheoretische Methoden zur numerischen Quadratur und Interpolation, Österreich. Akad. Wiss. Math.-Natur. Kl. S.-B. II 177 (1969), 51 – 77 (German). · Zbl 0264.65025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.