×

Improved solution methods for inelastic rate problems. (English) Zbl 0405.73068


MSC:

74S30 Other numerical methods in solid mechanics (MSC2010)
65N99 Numerical methods for partial differential equations, boundary value problems
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Argyris, J.H.; Dunne, P.C.; Angelopoulos, T., Dynamic response by large step integration, Earthq. eng. str. dyn., 2, 185-203, (1973)
[2] Argyris, J.H.; Vaz, L.E.; Willam, K.J., Higher order methods for transient diffusion analysis, Comp. meths. appl. mech. eng., 12, 243-278, (1977) · Zbl 0365.65061
[3] Willam, K.J., Numerical solution of inelastic rate processes, J. computers and structures, 8, 511-531, (1978) · Zbl 0374.73038
[4] Argyris, J.H., Elasto-plastic matrix displacement method for three-dimensional continua, J. royal aeron. soc., 69, 633-636, (1965)
[5] Doltsinis, J.St.; Balmer, H.A., Bemerkungen zur elasto-plastisches berechnung von tragwerken, ()
[6] Argyris, J.H.; Scharpf, D.W., Methods of elasto-plastic analysis, (), Zamp, 23, 517-551, (1972), also · Zbl 0258.73038
[7] Cormeau, I., Numerical stability in quasistatic elasto-viscoplasticity, Int. J. numer. meths. eng., 9, 109-127, (1975) · Zbl 0293.73022
[8] Hughes, T.J.R.; Taylor, R.L., Unconditionally stable algorithms for quasi-static elasto/visco-plastic finite element analysis, Computers and structures, 8, 169-173, (1978) · Zbl 0365.73029
[9] Axelsson, O., Solution of linear systems of equations: iterative methods, () · Zbl 0566.65017
[10] Argyris, J.H.; Dunne, P.C.; Angelopoulos, T., Nonlinear oscillations using the finite element technique, J. comp. meths. appl. mech. eng., 2, 203-250, (1973) · Zbl 0266.73049
[11] van der Houwen, P.J., Construction of integration formulas for initial value problems, (1977), North-Holland Amsterdam · Zbl 0359.65057
[12] Argyris, J.H.; Doltsins, J.St.; Kleiber, M., Incremental formulation in nonlinear mechanics and large strain analysis of elasto-plastic and elasto-viscoplastic problems-natural finite element approach-part 2, Comp. meths. appl. mech. eng., 14, 259-294, (1978) · Zbl 0389.73076
[13] Lubliner, J., On the structure of the rate equations of materials with internal variables, Acta mech., 17, 109-119, (1973) · Zbl 0279.73002
[14] Valanis, K.C., On the foundations of the endochronic theory of viscoplastic, Arch. mech., 27, 857-868, (1975) · Zbl 0327.73006
[15] Argyris, J.H.; Pister, K.S.; Szimmat, J.; Willam, K.J., Unified concepts of constitutive modelling and numerical solution methods for concrete greep problems, Comp. meths. appl. mech. eng., 10, 199-246, (1977) · Zbl 0353.73038
[16] Kranchi, M.B.; Zienkiewicz, O.C.; Owen, D.R.J., The visco-plastic approach to problem of plasticity and creep involving geometric nonlinear effects, Int. J. numer. meths. eng., 12, 169-181, (1978) · Zbl 0366.73032
[17] Komendant, G.J.; Polivka, M.; Pirtz, D., Study of concrete properties for prestressed concrete reactor vessels, (), Part II
[18] Argyris, J.H.; Faust, G.; Szimmat, J.; Warnke, E.P.; Willam, K.J., Finite element-berechnung von spannbeton-reaktordruck-behältern, Schriftenreihe dafstb 279, 1-34, (1977), Berlin
[19] Seki, S.; Kawasumi, M., Creep of concrete at elevated temperature, (), 591-638, Detroit
[20] Argyris, J.H.; Szimmat, J.; Willam, K.J., Inelastic finite element analysis of massive concrete structures, (), 331-356
[21] Hohenemser, K.; Prager, W., Über die ansätze der mechanik isotroper kontinua, Zamm, 12, 216-226, (1932) · JFM 58.1277.01
[22] Perzyna, P., The constitutive equations for rate sensitive plastic materials, Q. appl. math., 20, 321-332, (1962) · Zbl 0112.17204
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.