×

zbMATH — the first resource for mathematics

A collocation solver for mixed order systems of boundary value problems. (English) Zbl 0407.65035

MSC:
65L10 Numerical solution of boundary value problems involving ordinary differential equations
65D07 Numerical computation using splines
65-04 Software, source code, etc. for problems pertaining to numerical analysis
34B10 Nonlocal and multipoint boundary value problems for ordinary differential equations
68Q25 Analysis of algorithms and problem complexity
Software:
SOLVEBLOK; D003AD; HSL
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Uri Ascher, Discrete least squares approximations for ordinary differential equations, SIAM J. Numer. Anal. 15 (1978), no. 3, 478 – 496. · Zbl 0414.65049
[2] U. ASCHER, J. CHRISTIANSEN & R. D. RUSSELL, A Collocation Solver for Mixed Order Systems of Boundary Value Problems, Comp. Sci. Tech. Rep. 77-13, Univ. of British Columbia, 1977. · Zbl 0407.65035
[3] U. ASCHER & R. D. RUSSELL, Evaluation of B-Splines for Solving Systems of Boundary Value Problems, Comp. Sci. Tech. Rep. 77-14, Univ. of British Columbia, 1977.
[4] Carl de Boor, On calculating with \?-splines, J. Approximation Theory 6 (1972), 50 – 62. Collection of articles dedicated to J. L. Walsh on his 75th birthday, V (Proc. Internat. Conf. Approximation Theory, Related Topics and their Applications, Univ. Maryland, College Park, Md., 1970). · Zbl 0239.41006
[5] Carl de Boor, Good approximation by splines with variable knots. II, Conference on the Numerical Solution of Differential Equations (Univ. Dundee, Dundee, 1973) Springer, Berlin, 1974, pp. 12 – 20. Lecture Notes in Math., Vol. 363. · Zbl 0255.41007
[6] Carl de Boor, Package for calculating with \?-splines, SIAM J. Numer. Anal. 14 (1977), no. 3, 441 – 472. · Zbl 0364.65008
[7] Carl de Boor and Blâir Swartz, Collocation at Gaussian points, SIAM J. Numer. Anal. 10 (1973), 582 – 606. · Zbl 0232.65065
[8] C. DE BOOR & R. WEISS, Solveblok: A Package for Solving Almost Block Diagonal Linear Systems, with Applications to Spline Approximation and the Numerical Solution of Ordinary Differential Equations, MRC TSR #1625, Madison, Wisconsin, 1976.
[9] C. G. Broyden, Recent developments in solving nonlinear algebraic systems, Numerical methods for nonlinear algebraic equations (Proc. Conf., Univ. Essex, Colchester, 1969) Gordon and Breach, London, 1970, pp. 61 – 73.
[10] R. BULIRSCH, J. STOER & P. DEUFLHARD, Numerical Solution of Nonlinear Two-Point Boundary Value Problems. I, Numer. Math. Handbook Series Approximation, 1976.
[11] J. CERUTTI, Collocation for Systems of Ordinary Differential Equations, Comp. Sci. Tech. Rep. 230, Univ. Wisconsin-Madison, 1974.
[12] J. Christiansen and R. D. Russell, Error analysis for spline collocation methods with application to knot selection, Math. Comp. 32 (1978), no. 142, 415 – 419. · Zbl 0407.65034
[13] P. G. Ciarlet, M. H. Schultz, and R. S. Varga, Numerical methods of high-order accuracy for nonlinear boundary value problems. I. One dimensional problem, Numer. Math. 9 (1966/1967), 394 – 430. · Zbl 0155.20403
[14] James W. Daniel and Andrew J. Martin, Numerov’s method with deferred corrections for two-point boundary-value problems, SIAM J. Numer. Anal. 14 (1977), no. 6, 1033 – 1050. · Zbl 0366.65033
[15] J. E. Dennis Jr. and Jorge J. Moré, Quasi-Newton methods, motivation and theory, SIAM Rev. 19 (1977), no. 1, 46 – 89. · Zbl 0356.65041
[16] Peter Deuflhard, A relaxation strategy for the modified Newton method, Optimization and optimal control (Proc. Conf., Oberwolfach, 1974) Springer, Berlin, 1975, pp. 59 – 73. Lecture Notes in Math., Vol. 477.
[17] H.-J. Diekhoff, P. Lory, H.-J. Oberle, H.-J. Pesch, P. Rentrop, and R. Seydel, Comparing routines for the numerical solution of initial value problems of ordinary differential equations in multiple shooting, Numer. Math. 27 (1976/77), no. 4, 449 – 469. · Zbl 0361.65079
[18] D. DODSON, Optimal Order Approximation by Polynomial Spline Functions, Ph. D. thesis, Purdue Univ., 1972.
[19] R. ENGLAND, N. NICHOLS & J. REID, Subroutine D003AD, Harwell subroutine library, Harwell, England, 1973.
[20] S. C. EISENSTADT, R. S. SCHREIBER & M. H. SCHULTZ, Finite Element Methods for Spherically Symmetric Elliptic Equations, Res. Rept. #109, Comp. Sci., Yale Univ., 1977.
[21] Joseph E. Flaherty and R. E. O’Malley Jr., The numerical solution of boundary value problems for stiff differential equations, Math. Comput. 31 (1977), no. 137, 66 – 93. · Zbl 0402.65049
[22] P. W. Hemker, A numerical study of stiff two-point boundary problems, Mathematisch Centrum, Amsterdam, 1977. Mathematical Centre Tracts, No. 80. · Zbl 0426.65043
[23] Elias Houstis, A collocation method for systems of nonlinear ordinary differential equations, J. Math. Anal. Appl. 62 (1978), no. 1, 24 – 37. · Zbl 0398.65052
[24] M. Lentini and V. Pereyra, A variable order finite difference method for nonlinear multipoint boundary value problems, Math. Comp. 28 (1974), 981 – 1003. · Zbl 0308.65054
[25] M. Lentini and V. Pereyra, An adaptive finite difference solver for nonlinear two-point boundary problems with mild boundary layers, SIAM J. Numer. Anal. 14 (1977), no. 1, 94 – 111. Papers on the numerical solution of two-point boundary-value problems (NSF-CBMS Regional Res. Conf., Texas Tech Univ., Lubbock, Tex., 1975). · Zbl 0358.65069
[26] J. B. McLeod and Seymour V. Parter, On the flow between two counter-rotating infinte plane disks, Arch. Rational Mech. Anal. 54 (1974), 301 – 327. · Zbl 0287.76067
[27] H. J. PESCH & P. RENTROP, Numerical Solution of the Flow between Two-Counter-Rotating Infinite Plane Disks by Multiple Shooting, Rep. #7621, Technische Universität München, 1976. · Zbl 0374.76037
[28] P. Rentrop, Numerical solution of the singular Ginzburg-Landau equations by multiple shooting, Computing 16 (1976), no. 1-2, 61 – 67 (English, with German summary). · Zbl 0325.65035
[29] Robert D. Russell, Collocation for systems of boundary value problems, Numer. Math. 23 (1974), 119 – 133. · Zbl 0279.65070
[30] R. Russell, Efficiencies of \?-spline methods for solving differential equations, Proceedings of the Fifth Manitoba Conference on Numerical Mathematics (Univ. Manitoba, Winnipeg, Man., 1975) Utilitas Math. Publ., Winnipeg, Man., 1976, pp. 599 – 617. Congressus Numerantium, No. XVI.
[31] Robert D. Russell, A comparison of collocation and finite differences for two-point boundary value problems, SIAM J. Numer. Anal. 14 (1977), no. 1, 19 – 39. Papers on the numerical solution of two-point boundary-value problems (NSF-CBMS Regional Res. Conf., Texas Tech Univ., Lubbock, Tex., 1975). · Zbl 0359.65075
[32] R. D. Russell and J. Christiansen, Adaptive mesh selection strategies for solving boundary value problems, SIAM J. Numer. Anal. 15 (1978), no. 1, 59 – 80. · Zbl 0384.65038
[33] R. D. Russell and L. F. Shampine, A collocation method for boundary value problems, Numer. Math. 19 (1972), 1 – 28. · Zbl 0221.65129
[34] R. D. Russell and L. F. Shampine, Numerical methods for singular boundary value problems, SIAM J. Numer. Anal. 12 (1975), 13 – 36. · Zbl 0271.65051
[35] Melvin R. Scott and Herman A. Watts, Computational solution of linear two-point boundary value problems via orthonormalization, SIAM J. Numer. Anal. 14 (1977), no. 1, 40 – 70. Papers on the numerical solution of two-point boundary-value problems (NSF-CBMS Regional Res. Conf., Texas Tech Univ., Lubbock, Tex., 1975). · Zbl 0357.65058
[36] M. L. SCOTT & H. A. WATTS, ”A systematized collection of codes for solving twopoint boundary-value problems,” in Numerical Methods for Differential Systems, Academic Press, New York, 1976, pp. 197-227.
[37] J. M. Varah, Alternate row and column elimination for solving certain linear systems, SIAM J. Numer. Anal. 13 (1976), no. 1, 71 – 75. · Zbl 0338.65016
[38] K. A. Wittenbrink, High order projection methods of moment- and collocation-type for nonlinear boundary value problems, Computing (Arch. Elektron. Rechnen) 11 (1973), no. 3, 255 – 274 (English, with German summary). · Zbl 0288.65047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.