zbMATH — the first resource for mathematics

The free boundary in the Thomas-Fermi atomic model. (English) Zbl 0408.35083

35R35 Free boundary problems for PDEs
35Q99 Partial differential equations of mathematical physics and other areas of application
Full Text: DOI
[1] Aronszajn, N, A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order, J. math. pures appl., 36, 235-249, (1957) · Zbl 0084.30402
[2] Auchmuty, J.F.G; Beals, R, Variational solutions of some non-linear free boundary problems, Arch. rational mech. anal, 43, 255-271, (1971) · Zbl 0225.49013
[3] \scPh. Benilan and H. Brezis, Nonlinear problems related to the Thomas-Fermi equation, to appear. · Zbl 1150.35406
[4] Berestycki, H; Brezis, H, Sur certains problèmes de frontière libre, C.R. acad. sci. Paris, 283, 1091-1094, (1976) · Zbl 0342.35014
[5] Caffarelli, L.A; Friedman, A, The obstacle problem for the biharmonic operator, Ann. scu. norm. sup. Pisa, 6, 151-184, (1979) · Zbl 0405.31007
[6] Cordes, H.O, Über die bestimmtheit der Lösungen elliptischer differentialgleichungen durch anfangsvorgaben, Nechr. akad. wiss. Göttingen math.-phys. kl. iia, 239-258, (1956) · Zbl 0074.08002
[7] Friedman, A, ()
[8] Hartman, P; Wintner, A, On the local behavior of non-parabolic partial differential equations, Amer. J. math., 85, 449-476, (1953) · Zbl 0052.32201
[9] Heinz, E, Über die eindeutigkeit beim cauchyschen anfangswertproblem eines elliptischen: differentialgleichung zweiter ordnung, Nachr. akad. wiss. Göttingen math.-phys. kl. iia, 1-12, (1955) · Zbl 0067.07503
[10] Kinderlehrer, D, Variational inequalities and free boundary problems, Bull. amer. math. soc., 84, 7-26, (1978) · Zbl 0382.35004
[11] \scD. Kinderlehrer, L. Nirenberg, and J. Spruck, to appear.
[12] Kinderlehrer, D; Spruck, J, The shape and smoothness of stable plasma configurations, Ann. scu. norm. sup. Pisa, 5, 131-148, (1978) · Zbl 0409.76095
[13] Kellogg, O.D, ()
[14] Lieb, E.H; Simon, B, The Thomas-Fermi theory of atoms, molecules and solids, Advances in math., 23, 22-116, (1977) · Zbl 0938.81568
[15] Muller, C, On the behavior of the solutions of the differential equation δu = F(x, u) in the neighborhood of a point, Comm. pure appl. math., 7, 505-551, (1954) · Zbl 0056.32201
[16] Temam, R, A nonlinear eigenvalue problem: the shape at equilibrium of a confined plasma, Arch. rational mech. anal., 60, 51-73, (1975) · Zbl 0328.35069
[17] Temam, R, Remarks on a free boundary value problem arising in plasma physics, Comm. in partial differential equations, 2, 563-585, (1977) · Zbl 0355.35023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.