zbMATH — the first resource for mathematics

Geodesic loops and local triple systems in an affinely connected space. (English) Zbl 0409.53008

53B05 Linear and affine connections
22E10 General properties and structure of complex Lie groups
53C22 Geodesics in global differential geometry
Full Text: DOI
[1] M. Kikkawa, ?On local loops in affine manifolds,? J. Sci. Hiroshima Univ. A-I. Math.,28, 199-207 (1964). · Zbl 0141.19603
[2] L. V. Sabinin, ?The geometry of loops,? Theses of Lectures at the Fifth All-Union Conference on Contemporary Problems in Geometry, Samarkand (1972), p. 192.
[3] M. A. Akivis, Local Differentiable Quasigroups and Three-Webs of Multidimensional Surfaces. Study in the Theory of Quasigroups and Loops [in Russian], Shtiintsa, Kishinev (1973), pp. 3-12.
[4] M. A. Akivis, ?Local algebras of multidimensional three-webs,? Sib. Mat. Zh.,17, No. 1, 5-11 (1976).
[5] K. Yamaguti, ?On algebras of totally geodesic spaces (Lie triple systems),? J. Sci. Hiroshima Univ. A-I. Math.,21, 107-113 (1957). · Zbl 0084.18405
[6] E. Cartan, ?La geometrie des groupes de transformations,? J. Math. Pures Appl.,9, No. 6, 1-119 (1927). · JFM 53.0388.01
[7] E. Cartan, Geometry of Riemann Spaces [Russian translation], ONTI, Moscow-Leningrad (1936).
[8] M. A. Akivis, ?Three-webs of multidimensional surfaces,? Proceedings of the Geometrical Seminar of VINITI, Vol. 2, Moscow, Izd. Akad. Nauk SSSR (1969), pp. 7-31.
[9] P. I. Kovalev, ?Triple Lie systems and affinely connected spaces,? Mat. Zametki,14, No. 1, 107-112 (1973).
[10] N. Jacobson, Lie Algebras, Wiley (1962).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.