×

zbMATH — the first resource for mathematics

Combined elastoplastic and limit analysis via restricted basis linear programming. (English) Zbl 0409.73025

MSC:
74R20 Anelastic fracture and damage
74C99 Plastic materials, materials of stress-rate and internal-variable type
90C05 Linear programming
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Massonnet, C.; Save, M., Calcul plastique des constructions, ()
[2] Maier, G., Mathematical programming methods in structural analysis, () · Zbl 0362.90130
[3] Argyris, J.H.; Scharpf, D.W., Methods of elastoplastic analysis, Zamp, 23, 517-552, (1972) · Zbl 0249.73077
[4] Zienkiewicz, O.C.; Valliappan, S.; King, I.P., Elastoplastic solutions of engineering problems: initial stress, finite element approach, Int. J. numer. meths. eng., 1, 75-87, (1969) · Zbl 0247.73087
[5] Hodge, P.G., Complete solutions for elastic-plastic trusses, SIAM J. appl. math., 25, 435-447, (1973) · Zbl 0274.73024
[6] De Donate, O.; Maier, G., Historical deformation analysis of elastoplastic structures as a parametric linear complementarity problem, (), 166-171 · Zbl 0369.73047
[7] Maier, G., A matrix structural theory of piecewise linear elastoplasticity with interacting yield planes, Meccanica, 5, 54-66, (1970) · Zbl 0197.23303
[8] De Donato, O.; Maier, G., Mathematical programming methods for the inelastic analysis of reinforced concrete frames allowing for limited rotation capacity, Int. J. numer. meths. eng., 4, 307-328, (1972)
[9] Maier, G.; Grierson, D.E.; Best, M.J., Mathematical programming methods for deformation analysis at plastic collapse, (), 599-612 · Zbl 0364.73002
[10] Kirchgässner, K., Ein verfahren zur maximierung linearer funktionen in nichtkonvexen bereichen, Zamm, 42, T22-T24, (1962) · Zbl 0108.33301
[11] Cottle, R.W., On Minkowski matrices and the linear complementarity problem, in: lecture notes in mathematics 477, optimization and optimal control, (1975), Springer Berlin
[12] Kaneko, I., A maximization problem related to parametric linear complementarity, technrep. 75-1, (1975), Dept. Operations Research, Stanford Univ
[13] Hadley, G., Linear programming, (1969), McGraw-Hill New York · Zbl 0102.36304
[14] Cottle, R.W., Solution rays for a class of complementarity problems, (), 59-70
[15] Volpentesta, A., Su alcune proprietà delie soluzioni dei problemi lineari di complementarietà, ()
[16] Giacomini, S.; Maier, G.; Paterlini, F., Complete solutions of elastic-plastic discretized structures by linear programming, 4th international conference on structural mechanics in nuclear technology (SMIRT 4), Vol. N, 3/9, (Aug. 1977), San Francisco
[17] Corradi, L.; De Donato, O.; Maier, G., Inelastic analysis of reinforced concrete frames, J. struct. div. ASCE, 100, 1925-1942, (1974)
[18] Macchi, G., Méthode des rotations imposées, (), 3-48, N.53
[19] D.L. Smith, The Wolfe-Markowitz algorithm for nonholonomic elastoplastic analysis. To appear.
[20] D.L. Smith and J. Munro, On uniqueness in the elastoplastic analysis of frames. To appear.
[21] F. Casciati, Elastoplastic deformation analysis: a parametric linear programming method. To appear in J. Méc. Appliquée.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.