×

zbMATH — the first resource for mathematics

Homology stability for linear groups. (English) Zbl 0415.18012

MSC:
18F25 Algebraic \(K\)-theory and \(L\)-theory (category-theoretic aspects)
20G10 Cohomology theory for linear algebraic groups
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Alperin, R.: Stability forH 2(SUn). AlgebraicK-theory. Evanston Conference, 1976. Lecture Notes in Math.551, 283-289. Berlin Heidelberg New York: Springer 1976
[2] Bass, H.: AlgebraicK-theory. New York: Benjamin 1968 · Zbl 0174.30302
[3] Bass, H.:K-theory and stable algebra. Publ. I.H.E.S.,22, 489-544 (1964) · Zbl 0248.18025
[4] Bass, H.: Some problems in ?classical? algebraicK-theory, AlgebraicK-theory II. Batelle Institute Conference 1972. Lecture Notes in Math.342, 1-70. Berlin Heidelberg New York: Springer 1973
[5] Borel, A.: Stable real cohomology of arithmetic groups. Ann. Sci. Ecole Norm. Sup (4)7, 235-272 (1974) · Zbl 0316.57026
[6] Brown, K.S.: Cohomology of groups, AlgebraicK-theory. Evanston Conference 1976. Lecture Notes in Math. 551, 249-259. Berlin Heidelberg New York: Springer 1976
[7] Charney, R.: Homology stability forGL n of a Dedekind domain. Inventiones Math.56, 1-17 (1980) · Zbl 0427.18013 · doi:10.1007/BF01403153
[8] Cohn, P.M.: On the structure of theGL 2 of a ring. Publ. I.H.E.S.,30, 5-53 (1966)
[9] Dwyer, W.G.: Twisted homological stability for general linear groups. Annals of Math.111, 239-251 (1980) · Zbl 0427.18014 · doi:10.2307/1971200
[10] Grothendieck, A.: Sur quelques points d’algèbre homologique. Tohoku Math. J.9, 119-221 (1957) · Zbl 0118.26104
[11] Grothendieck, A.: EGA III Chap. 0, § 11, Publ. I.H.E.S.,11, 1961
[12] Harder, G.: Die KohomologieS-arithmetischer Gruppen über Funktionenkörpern. Inventiones Math.,42, 135-175 (1977) · Zbl 0391.20036 · doi:10.1007/BF01389786
[13] Kallen, W. van der: Injective stability forK 2, AlgebraicK-theory. Evanston Conference 1976. Lecture Notes in Math.551, 77-154. Berlin Heidelberg New York: Springer 1976
[14] Kallen, W. van der: Another presentation for Steinberg Groups. Indag. Math.39, 304-412 (1977) =Nderl. Akad. Wetensch. Proc. Ser A80, 304-312 (1977) · Zbl 0375.20034
[15] Kallen, W. van der: Generators and relations in algebraicK-theory. Proc. International Congress of Mathematicians at Helsinki, 305-310, 1978
[16] Lam, T.Y., Siu, M.K.: An introduction to algebraicK-theory, American Math. Monthly82(4), 329-354 (1975) · Zbl 0323.18006 · doi:10.2307/2318406
[17] Loday, J.-L.:K-théorie algébrique et représentations de groupes, Ann. Sci. Ecole Norm. Sup. (4)9, 309-378 (1976)
[18] Maazen, H.: Homology stability for the general linear group, thesis, Utrecht 1979.
[19] Maazen, H.: Stabilité de l’homologie deGL n, C.R. Acad. Sci. Paris Sér. A-B,288, A707-A708 (1979) · Zbl 0411.20028
[20] McLane, S.: Homology. Berlin Heidelberg New York: Springer 1967
[21] Nakaoka, M.: Decomposition theorem for homology groups of Symmetric Groups. Ann. of Math.71, 16-42 (1960) · Zbl 0090.39002 · doi:10.2307/1969878
[22] Quillen, D.: Finite generation of the groupsK i of rings of algebraic integers, AlgebraicK-theory I, Batelle Institute Conference 1972, Lecture Notes in Math.341, 179-198. Berlin Heidelberg New York: Springer 1973
[23] Quillen, D.: Higher AlgebraicK-theory, Proc. Intenational Congress of Mathematicians at Vancouver 1974, Vol.1, 171-176
[24] Segal, G.: Classifying spaces and spectral sequences, Publ. I.H.E.S.34, 105-112 (1968) · Zbl 0199.26404
[25] Serre, J.-P.: Modules projectifs et espaces fibrés a fibre vectorielle. Sém. Dubreil,23, 1957/58
[26] Suslin, A.A., Tulenbayev, M.S.: A theorem on stabilization for Milnor’sK 2 functor. Rings and Modules, Zap. Naucn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI)64, 131-152 (1976) (Russian)
[27] Vaserstein, L.N.: The foundations of algebraicK-theory. Uspehi Mat. Nauk31, 87-149 (1976) = Russian Math. Surveys31, 89-156 (1976)
[28] Vaserstein, L.N.: Stable rank and dimensionality of topological spaces. Funkcional Anal. i Prilozen (2)5, 17-27 (1971) = Funktional Anal. Appl.5, 102-110 (1971) · Zbl 0239.16028
[29] Vaserstein, L.N.: On the stabilization of the general linear group over a ring. Mat. Sb. Tom79 (121) No. 3, 405-424 (1969) = Math. USSR Sbornik8, No. 3, 383-400 (1979)
[30] Vaserstein, L.N.: Stabilization for classical groups over rings. Mat. Sb. Tom93 (135) No. 2, 268-295 (1974) = Math. USSR Sbornik22, No. 2, 271-303 (1974)
[31] Vaserstein, L.N.: Stabilization for Milnor’sK 2 functor. Uspehi Mat. Nauk30, 224 (1975) (Russian)
[32] Vogtmann, K.: Homological stability forO nn. Comm. in Alg.7, (1) 9-38 (1979) · Zbl 0417.20040 · doi:10.1080/00927877908822331
[33] Wagoner, J.B.: Stability for homology of the general linear group over a ring. Topology15, 417-423 (1976) · Zbl 0362.18016 · doi:10.1016/0040-9383(76)90035-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.