×

zbMATH — the first resource for mathematics

On compatible finite element models for elastic plastic analysis. (English) Zbl 0417.73073

MSC:
74S05 Finite element methods applied to problems in solid mechanics
74C99 Plastic materials, materials of stress-rate and internal-variable type
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Armen H., Jr.,Pifko A. B., Levine H. S., Isakson G.,Plasticity, in Finite Element Techniques in Structural Mechanics, H. Tottenham and C. Brebbia edts., Chapter 8, Southampton University Press 1970.
[2] Hodge P. G., Jr.,Computer Solutions of Plasticity Problems, in Problems of Plasticity, A. Sawczuk edt., 261, Noordhoff Int. Pub. 1974.
[3] Nayak G. C., Zienkiewcz O. C.,Elasto Plastic Stress Analysis. A Generalization for various Constitutive Relations Including Strain Softening,Int. J. Num. Meth. Eng.,5, 113, 1972. · Zbl 0241.73034
[4] Maier G.,A Quadratic Programming Approach for Certain Classes of Nonlinear Structural Problems,Meccanica,3, 121, 1968. · Zbl 0165.28502
[5] Maier G.,Some Theorems for Plastic Strain Rates and Plastic Strains,J. Mécanique,8, 5, 1969. · Zbl 0176.25901
[6] De Donato O., Franchi A., A Modified Gradient Method for Finite Element Elastoplastic Analysis by Quadratic Programming, Comp. Meth. Appl. Mech. Eng., 2, 107, 1973. · Zbl 0258.73041
[7] Prager W.,The General Theory of Limit Design,Proc. 8-th Int. Conf. Appl. Mech.,2, 65, Instanbul, Turkey, 1952. · Zbl 0049.25605
[8] Hodge P. G., Jr.,A Consistent Finite Element Model for the Two-Dimensional Continuum, Ingenieur Archiv,39, 375, 1970. · Zbl 0206.53302
[9] Argyris J. H.,Continua and Discontinua, opening address to the 1-st Conf. Matrix Methods in Structural Mechanics, Wright-Patterson A.F.B., Dayton, Ohio, 1965.
[10] De Donato O., Maier G.,Mathematical Programming Methods for the Inelastic Analysis of Reinforced Concrete Frames Allowing for Limited Rotation Capacity,Int. J. Num. Meth. Eng.,4, 307, 1972.
[11] Zienkiewicz O. C.,The Finite Element Method, 3-rd edition, Mc Graw-Hill, 1977. · Zbl 0435.73072
[12] Prager W., Hodge P. G., Jr.,Theory of Perfectly Plastic Solids, J. Wiley and Sons, 1951. · Zbl 0044.39803
[13] Przemieniecki J. S.,Theory of Matrix Structural Analysis, Mc Graw-Hill, 1968. · Zbl 0177.53201
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.