Gotay, Mark J.; Nester, James M.; Hinds, George Presymplectic manifolds and the Dirac-Bergmann theory of constraints. (English) Zbl 0418.58010 J. Math. Phys. 19, 2388-2399 (1978). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 7 ReviewsCited in 107 Documents MSC: 37J99 Dynamical aspects of finite-dimensional Hamiltonian and Lagrangian systems 53C15 General geometric structures on manifolds (almost complex, almost product structures, etc.) Keywords:solvability of generalized Hamilton-type equations; presymplectic manifold; local Dirac-Bergmann theory of constraints PDF BibTeX XML Cite \textit{M. J. Gotay} et al., J. Math. Phys. 19, 2388--2399 (1978; Zbl 0418.58010) Full Text: DOI References: [1] DOI: 10.1098/rspa.1958.0141 · Zbl 0080.41402 · doi:10.1098/rspa.1958.0141 [2] DOI: 10.1098/rspa.1958.0141 · Zbl 0080.41402 · doi:10.1098/rspa.1958.0141 [3] DOI: 10.1098/rspa.1958.0141 · Zbl 0080.41402 · doi:10.1098/rspa.1958.0141 [4] DOI: 10.1098/rspa.1958.0142 · Zbl 0080.41403 · doi:10.1098/rspa.1958.0142 [5] DOI: 10.1098/rspa.1958.0142 · Zbl 0080.41403 · doi:10.1098/rspa.1958.0142 [6] Ann. Inst. H. Poincaré 20 pp 365– (1974) [7] Tulczyjew W. M., Symposia Math. 14 pp 247– (1974) [8] Lichnerowicz A., C. R. Acad. Sci. Paris A 280 pp 523– (1975) [9] Künzle H. P., Ann. Inst. H. Poincaré A 11 pp 393– (1969) [10] DOI: 10.1063/1.1666377 · Zbl 0282.70012 · doi:10.1063/1.1666377 [11] DOI: 10.1007/BFb0045895 · doi:10.1007/BFb0045895 [12] DOI: 10.1016/0001-8708(71)90020-X · Zbl 0213.48203 · doi:10.1016/0001-8708(71)90020-X [13] Marsden J., Proc. Am. Math. Soc. 32 pp 590– (1972) [14] DOI: 10.1063/1.1666045 · Zbl 0232.70018 · doi:10.1063/1.1666045 [15] Šniatycki J., Proc. Biennial Seminar of the Canadian Math. Cong. 2 pp 125– (1972) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.