A 4 CST quadrilateral element for incompressible materials and nearly incompressible materials. (English) Zbl 0418.73009


74S30 Other numerical methods in solid mechanics (MSC2010)
49S05 Variational principles of physics
Full Text: DOI


[1] M. Bercovier,Thèse d’état, Rouen, 1976.
[2] M. Bercovier,Perturbation of mixed variational problems, application to mixed finite element methods, (To appear in R.A.I.R.O.). · Zbl 0428.65059
[3] M. Bercovier–M. Engelman,A finite element for the numerical solution of viscous incompressible flows. (To appear in J. Computational Phys.). · Zbl 0463.76003
[4] M. Crouzeix–P. A. Raviart,Conforming and non-conforming FEM for solving the stationary Stokes equations, R.A.I.R.O., An Num. R.3, (1973), 33–75. · Zbl 0302.65087
[5] L. R. Hermann,Elasticity equations for incompressible or nearly incompressible materials by a variational theorem, A.I.A.A.J.3 (1965), 1896–1900.
[6] T. J. R. Hughes–R. L. Taylor–J. F. Levy,A finite element method for incompressible viscous flows, Preprint, 2nd Int. Symp. on F.E.M. in flow problems, Santa Margherita, June 1976. · Zbl 0442.76027
[7] J. C. Nagtedaal–D. M. Parks–J. R. Rice,On numerically accurate finite element solutions in the fully plastic range, Comput. Methods Appl. Mech. Engrg.4, (1974), 153–177. · Zbl 0284.73048
[8] P. J. Naylor,Stresses in nearly incompressible materials by finite elements with application to the calculation of excess pore pressures, Internat. Numar. Methods Engrg.8, (1974), 443–460. · Zbl 0282.73048
[9] S. Timoshenko–J. N. Goodier,Theory of Elasticity, (1951), McGraw-Hill New York. · Zbl 0045.26402
[10] O. C. Zienkiewicz–R. L. Taylor–J. M. Too,Reduced integration technique in general analysis of plates and shells, Internat. J. Numer. Methods Engrg.3, (1971), 275–290. · Zbl 0253.73048
[11] O. C. Zienkiewicz–P. N. Godbole,Flow of plastic and visco-plastic solids special reference to extrusion and forming processes, Internat. J. Numer. Methods Engrg.8, (1978), 3–16. · Zbl 0271.73038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.