×

zbMATH — the first resource for mathematics

Application of hereditary symmetries to nonlinear evolution equations. (English) Zbl 0419.35049

MSC:
35G10 Initial value problems for linear higher-order PDEs
35K25 Higher-order parabolic equations
35R99 Miscellaneous topics in partial differential equations
35Q99 Partial differential equations of mathematical physics and other areas of application
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Yamamuro, S., Differential calculus in topological linear spaces, Lecture notes in mathematics, Vol. 374, (1974), Berlin-Heidelberg-New York · Zbl 0276.58001
[2] Wadati, M., Invariances and conservation laws of the Korteweg-de Vries equation, Stud. appl. math., 59, 153-186, (1978) · Zbl 0386.35039
[3] Magri, F., A simple model of the integrable Hamiltonian equation, J. math. phys., 19, 1156-1162, (1978) · Zbl 0383.35065
[4] Lax, P.D., Integrals of nonlinear equations of evolution and solitary waves, Communs pure appl. math., 21, 467-490, (1968) · Zbl 0162.41103
[5] Fuchssteiner, B., Pure soliton solutions of some nonlinear partial differential equations, Communs math. phys., 55, 187-194, (1977) · Zbl 0361.35018
[6] Ames, W.F., Nonlinear partial differential equations in engineering, (1965), Academic Press New York, London · Zbl 0255.35001
[7] Gardner, C.S.; Greene, J.M.; Kruskal, M.D.; Miura, R.M., Korteweg-de Vries equation and generalizations VI. methods for exact solution, Communs pure appl. math., 27, 97-133, (1974) · Zbl 0291.35012
[8] Lax, P.D., Almost periodic solutions of the KdV-equation, SIAM rev., 18, 351-375, (1976) · Zbl 0329.35015
[9] Miura, R.M., The korteweg—de Vries equation: A survey of results, SIAM rev., 18, 412-459, (1976) · Zbl 0333.35021
[10] Zakharov, V.E.; Shabat, B.A.; Zakharov, V.E.; Shabat, B.A., Exact theory of two-dimensional self-focusing and one-dimensional self modulation of waves in nonlinear media, Zh. eksp. teor. fiz., Soviet phys. JETP, 34, 62-69, (1972)
[11] Ablowitz, M.J.; Kaup, D.J.; Newell, A.C.; Segur, H., The inverse scattering transform-Fourier analysis for nonlinear problems, Stud. appl. math., 53, 249-315, (1974) · Zbl 0408.35068
[12] Zhiber, A.V., Conservation laws for the equation utt − uxx + sin(u) = 0, Funktiosional’nyi analiz i ego prilozheniya, 11, 65-66, (1977) · Zbl 0348.35070
[13] Ablowitz, M.J.; Kaup, D.J.; Newell, A.C.; Segur, H., Nonlinear evolution equations of physical significance, Phys. rev. letters, 31, 125-127, (1973) · Zbl 1243.35143
[14] Kruskal, M.D., The korteweg—de Vries equation and related evolution equations, Lectures in applied mathematics, Am. math. soc., 15, 61-84, (1974)
[15] Kruskal, M.D.; Zabusky, N.J., Interaction of solutions in a collisionless plasma and the recurrence of initial states, Phys. rev. letters, 15, 240-243, (1965) · Zbl 1201.35174
[16] Miura, R.M., Korteweg—de Vries equation and generalizations I. A remarkable explicit nonlinear transformation, J. math. phys., 9, 1202-1204, (1968) · Zbl 0283.35018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.