×

zbMATH — the first resource for mathematics

On subharmonic solutions of hamiltonian systems. (English) Zbl 0425.34024

MSC:
34A99 General theory for ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Rabinowitz, Comm. Pure Appl. Math. 31 pp 157– (1978)
[2] Benci, Inv. Math. 52 pp 241– (1979)
[3] Jacobowitz, J. Diff. Eq. 20 pp 37– (1976)
[4] Hartman, J. Diff. Eq. 26 pp 37– (1977)
[5] and , Nonlinear oscillations and boundary value problems for Hamiltonian systems, preprint.
[6] Birkhoff, Mem. Pont. Acad. Sci. Novi Lyncaei (3) 1 pp 85– (1935)
[7] and , Lectures on Celestial Mechanics, Springer-Verlag, Heidelberg, 1971. · doi:10.1007/978-3-642-87284-6
[8] Moser, Math. Ann. 126 pp 325– (1953)
[9] Conley, Comm. Pure Appl. Math. 16 pp 449– (1963)
[10] Birkhoff, Comp. Rend. Acad. Sci. 192 pp 196– (1931)
[11] Birkhoff, Ann. Mat. Pura Appl. 12 pp 117– (1933) · Zbl 0007.37104 · doi:10.1007/BF02413852
[12] Lewis, Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 19 pp 234– (1934)
[13] Arnold, Comp. Rend. Acad. Sci. 261 pp 3719– (1965)
[14] Harris, J. Diff. Eq. 4 pp 131– (1968)
[15] Proof of a generalized form of a fixed point theorem due to G. D. Birkhoff, in Geometry and Topology, Springer Lecture Notes in Math., No. 597, Proceedings of the Selcool held at IMPA, Rio de Janeiro, 1976, Springer, N.Y., 1977, pp. 464–494.
[16] A variational method for finding periodic solutions of differential equations in Nonlinear Evolution Equations, ed., pp. 225–251, Academic Press, New York, 1978. · doi:10.1016/B978-0-12-195250-1.50017-5
[17] Lax, Comm. Pure Appl. Math 8 pp 615– (1955)
[18] Nehari, Acta. Math. 105 pp 141– (1961)
[19] Wolkowisky, J. Diff. Eq. 11 pp 385– (1972)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.