×

zbMATH — the first resource for mathematics

Global stability of predator-prey interactions. (English) Zbl 0425.92009

MSC:
92D25 Population dynamics (general)
93D05 Lyapunov and other classical stabilities (Lagrange, Poisson, \(L^p, l^p\), etc.) in control theory
PDF BibTeX Cite
Full Text: DOI
References:
[1] Goh, B. S.: Global stability in two species interactions. J. Math. Biol. 3, 313-318 (1976a) · Zbl 0362.92013
[2] Goh, B. S.: Nonvulnerability of ecosystems in unpredictable environments. Theor. Pop. Biol. 10, 83-95 (1976b) · Zbl 0335.92017
[3] Goh, B. S.: Global stability in many species systems. Amer. Natur. 111, 135-143 (1977)
[4] Hahn, W.: Stability of Motion. New York: Springer 1967 · Zbl 0189.38503
[5] Hallam, T. G.: Structural sensitivity of grazing formulations in nutrient controlled plankton models. J. Math. Biol. 5, 269-280 (1978) · Zbl 0379.92015
[6] Harrison, G. W.: Persistent sets via Lyapunov functions. Nonlinear Analysis. 3, 73-80 (1979a) · Zbl 0407.92020
[7] Harrison, G. W.: Stability under environmental stress: resistance, resilience, persistence, and variability. Amer. Natur. (1979b)
[8] Harrison, G. W.: Global stability of food chains. Amer. Natur. (1979c)
[9] Hassell, M. P., Lawton, J. H., Beddington, J. R.: Sigmoid functional responses by invertebrate predators and parasitoids. J. Anim. Ecol 46, 249-262 (1977)
[10] Hastings, A.: Global stability of two species systems. J. Math. Biol. 5, 399-403 (1978) · Zbl 0382.92008
[11] Holling, C. S.: The components of predation as revealed by a study of small-mammal predation of the European pine sawfly. Canad. Entomol. 91, 293-320 (1959)
[12] Holling, C. S.: The functional response of predators to prey density and its role in mimicry and population regulation. Mem. Ent. Soc. Can. 45, 1-60 (1965)
[13] Holling, C. S.: Resilence and stability of ecological systems. Ann. Rev. Ecol. Syst. 4, 1-24 (1973)
[14] Hsu, S. B.: On global stability of a predator prey system. Math. Biosci. 39, 1-10 (1978a) · Zbl 0383.92014
[15] Hsu, S. B.: The application of the PoincarĂ© transform to the Lotka-Volterra model. J. Math. Biol. 6, 67-73 (1978b) · Zbl 0389.92019
[16] Ivlev, V. S.: Experimental ecology of the feeding of fishes. New Haven: Yale Univ. Press 1961
[17] LaSalle, J. P.: The extent of asymptotic stability. Proc. Nat. Acad. Sci. U.S.A. 46, 363-365 (1960) · Zbl 0094.28602
[18] Leslie, P. H.: Some further notes on the use of matrices in population mathematics. Biometrika. 35, 213-245 (1948) · Zbl 0034.23303
[19] Monod, J.: The growth of bacterial cultures. Annu. Rev. Microbiol. 3, 371-394 (1949)
[20] Murdoch, W. W., Oaten A.: Predation and population stability. Advan. Ecol. Res. 9, 1-131 (1975)
[21] Rosenzweig, M. L., MacArthur, R. H.: Graphical representation and stability conditions. Amer. Natur. 97, 209-223 (1963)
[22] Solomon, M. E.: The natural control of animal populations. J. Anim. Ecol. 18, 1-35 (1949)
[23] St. Amant, J.: The mathematics of predator-prey interactions. M. A. Thesis, Univ. of Calif., Santa Barbara, Calif. 1970
[24] Steele, J. H.: The structure of Marine Ecosystems. Cambridge: Harvard Univ. Press 1974
[25] Volterra, V.: Lecons sur la Theorie Mathematique de la Lutte pour la Vie. Paris: Gauthier-Villars 1931
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.