×

zbMATH — the first resource for mathematics

Algebraic geometry and local differential geometry. (English) Zbl 0426.14019

MSC:
14J40 \(n\)-folds (\(n>4\))
14J17 Singularities of surfaces or higher-dimensional varieties
14N05 Projective techniques in algebraic geometry
14C20 Divisors, linear systems, invertible sheaves
32Q99 Complex manifolds
14C30 Transcendental methods, Hodge theory (algebro-geometric aspects)
53B99 Local differential geometry
53A20 Projective differential geometry
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML
References:
[1] S. BOCHNER , Euler-Poincaré characteristic for Locally Homogeneous and Complex Spaces (Ann. Math., Vol. 51, 1950 , pp. 241-261). MR 11,617b | Zbl 0040.38002 · Zbl 0040.38002 · doi:10.2307/1969322
[2] E. CARTAN , Groupes finis et continus et la géométrie différentielle , Gauthier-Villars, Paris, 1937 . · JFM 63.1227.02
[3] E. CARTAN , Sur la déformation projective des surfaces , œuvres complètes ; Vol. 1, Part 3, 1955 , pp. 441-539, Gauthier-Villars, Paris.
[4] G. FUBINI , and E. CECH , Géométrie projective différentielle des surfaces , Gauthier-Villars, Paris, 1931 . Zbl 0002.35101 | JFM 57.0936.01 · Zbl 0002.35101 · www.emis.de
[5] W. FULTON and A. HANSEN , A Connectedness Theorem for Projective Varieties, with Applications to Intersections and Singularities of Mappings (preprint available from Brown University). · Zbl 0389.14002 · doi:10.2307/1971249
[6] M. GREEN , The Moving Frame, Differential Invariants and Rigidity Theorems for Curves in Homogeneous Spaces (Duke J. Math., Vol. 45, 1978 ). Article | MR 80a:53011 | Zbl 0414.53039 · Zbl 0414.53039 · doi:10.1215/S0012-7094-78-04535-0 · minidml.mathdoc.fr
[7] P. GRIFFITHS , On Cartan’s Method of Lie Groups and Moving Frames as Applied to Existence and Uniqueness Questions in Differential Geometry (Duke J. Math., Vol. 41, 1974 , pp. 775-814). Article | MR 53 #14355 | Zbl 0294.53034 · Zbl 0294.53034 · doi:10.1215/S0012-7094-74-04180-5 · minidml.mathdoc.fr
[8] P. GRIFFITHS , Hermitian Differential Geometry, Chern Classes, and Positive Vector Bundles, Global Analysis (papers in honor of K. Kodaira), Princeton Press, 1969 , pp. 185-251. MR 41 #2717 | Zbl 0201.24001 · Zbl 0201.24001
[9] P. GRIFFITHS and J. HARRIS , Principles of Algebraic Geometry , John Wiley and Sons, New York, 1978 . MR 80b:14001 | Zbl 0408.14001 · Zbl 0408.14001
[10] G. JENSEN , Higher Order Contact of Submanifolds of Homogeneous Spaces (Lecture Notes in Math., No. 610, Springer-Verlag, New York, 1977 ). MR 58 #18226 | Zbl 0356.53005 · Zbl 0356.53005
[11] T. OCHIAI , On Holomorphic Curves in Algebraic Varieties with Ample Irregularity (Invent. Math., Vol. 43, 1977 , pp. 83-96). MR 57 #12912 | Zbl 0374.32006 · Zbl 0374.32006 · doi:10.1007/BF01390205 · eudml:142509
[12] B. SMYTHE , Weakly Ample Kähler Manifolds and Euler Number , (Math. Ann., Vol. 224, 1976 , pp. 269-279). Zbl 0354.32009 · Zbl 0354.32009 · doi:10.1007/BF01459849 · eudml:162914
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.