Un confronto tra l’integrale di Daniell-Stone e quello di Lebesgue. (Italian) Zbl 0426.28005


28A25 Integration with respect to measures and other set functions
28C05 Integration theory via linear functionals (Radon measures, Daniell integrals, etc.), representing set functions and measures
Full Text: DOI


[1] Aquaro G.,Alcuni aspetti della teoria dell’integrale di Daniell-Stone, Conf. Seminario Matem. Univ. Bari, 1965. · Zbl 0337.28008
[2] Fremlin D. H.,Topological Riesz Spaces and Measure Theory, Cambridge University Press, 1974. · Zbl 0273.46035
[3] Kakutani S.,Concrete representation of abstract (L)-spaces and the mean ergodic theorem, Ann. of Math., (2)42 (1941), 523–537. · Zbl 0027.11102
[4] Segal I. E.,Equivalences of measure spaces, Am. Jour. of Math.,73, (1951), 275–313. · Zbl 0042.35502
[5] Stone M. H.,Notes on integration, Proc. Nat. Acad. Sci. U.S.A.,34, (1948), 336–342. 447–455, 483–490;35 (1949), 50–58. · Zbl 0031.01402
[6] Volčič A.,Localizzabilità e decomposizione di Hahn per l’integrale di Daniell-Stone, Quaderni matematici Ist. Matem. Univ. Trieste, 1974.
[7] Volčič A.,Sulla differenziazione degli integrali di Daniell-Stone; in corso di pubblicazione.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.