×

zbMATH — the first resource for mathematics

Regular points of Lipschitz functions. (English) Zbl 0427.58008

MSC:
58C15 Implicit function theorems; global Newton methods on manifolds
58C20 Differentiation theory (Gateaux, Fréchet, etc.) on manifolds
58C05 Real-valued functions on manifolds
58B99 Infinite-dimensional manifolds
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] N. Bourbaki, Éléments de mathématique. Fasc. XXXVI. Variétés différentielles et analytiques. Fascicule de résultats (Paragraphes 8 à 15), Actualités Scientifiques et Industrielles, No. 1347, Hermann, Paris, 1971 (French). · Zbl 0217.20401
[2] F. H. Clarke, Necessary conditions for nonsmooth problems in optimal control, Ph. D. Thesis, Univ. of Washington, 1973.
[3] Frank H. Clarke, A new approach to Lagrange multipliers, Math. Oper. Res. 1 (1976), no. 2, 165 – 174. · Zbl 0404.90100
[4] I. Ekeland, On the variational principle, J. Math. Anal. Appl. 47 (1974), 324 – 353. · Zbl 0286.49015
[5] Alan J. Hoffman, On approximate solutions of systems of linear inequalities, J. Research Nat. Bur. Standards 49 (1952), 263 – 265.
[6] A. D. Ioffe, Necessary and sufficient conditions for a local minimum (to appear). · Zbl 0417.49027
[7] Теория ѐкстремал\(^{\приме}\)ных задач., Издат. ”Наука”, Мосцощ, 1974 (Руссиан). Серия ”Нелинейный Анализ и его Приложения”. [Сериес ин Нонлинеар Аналысис анд иц Апплицатионс].
[8] Gérard Lebourg, Valeur moyenne pour gradient généralisé, C. R. Acad. Sci. Paris Sér. A-B 281 (1975), no. 19, Ai, A795 – A797 (French, with English summary). · Zbl 0317.46034
[9] Ѐлементы функционал\(^{\приме}\)ного анализа, Сецонд ревисед едитион, Издат. ”Наука”, Мосцощ, 1965 (Руссиан). · Zbl 0044.32501
[10] Stephen M. Robinson, An application of error bounds for convex programming in a linear space, SIAM J. Control 13 (1975), 271 – 273. · Zbl 0297.90072
[11] R. T. Rockafellar, Convex analysis, Princeton Univ. Press, Princeton, N. J., 1970. · Zbl 0193.18401
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.