×

Equations de Schrödinger non linéaires en dimension deux. (French) Zbl 0428.35021


MSC:

35J10 Schrödinger operator, Schrödinger equation
35Q99 Partial differential equations of mathematical physics and other areas of application
35J60 Nonlinear elliptic equations
35A05 General existence and uniqueness theorems (PDE) (MSC2000)
35B65 Smoothness and regularity of solutions to PDEs
35D10 Regularity of generalized solutions of PDE (MSC2000)
35B40 Asymptotic behavior of solutions to PDEs
78A05 Geometric optics
78A10 Physical optics
35J65 Nonlinear boundary value problems for linear elliptic equations
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Baillon, C. R. Acad. Sci. Paris Sér. A-B 284 pp 939– (1977)
[2] Baillon, C.R. Acad. Sci. Paris Sér. A-B 284 pp 869– (1977)
[3] Aitken, N.R.L. Report 7293 (1971)
[4] Suydam, Spec. Publs Natn. Bur. Stand. 387 pp 42– (1973)
[5] DOI: 10.1016/S0304-0208(08)70877-6
[6] Strauss, Non linear invariant wave equations
[7] Berestycki, C. R. Acad. Sci. Paris Sér. A-B 287 pp 503– (1978)
[8] Reed, Methods of Modern Mathematical Physics II (1975)
[9] DOI: 10.1063/1.861679
[10] Nirenberg, Ann. Scuola Norm. Sup. Pisa 13 pp 115– (1959)
[11] DOI: 10.1103/PhysRevLett.15.1005
[12] DOI: 10.1016/0022-1236(79)90076-4 · Zbl 0396.35028
[13] DOI: 10.2307/1970347 · Zbl 0204.16004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.