×

zbMATH — the first resource for mathematics

The non-central negative binomial distribution. (English) Zbl 0432.62011

MSC:
62E15 Exact distribution theory in statistics
62E10 Characterization and structure theory of statistical distributions
62P99 Applications of statistics
62F12 Asymptotic properties of parametric estimators
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] ;, 1924: Ph. D. Thesis, University of Zurich.
[2] Barrett, IRE Trans. Information Theory 1 pp 10– (1955)
[3] Beall, Biometrics 9 pp 354– (1953)
[4] ;, 1953: Higher Transcendental Functions, Vol. 2. McGraw-Hill. · Zbl 0051.30303
[5] Falls, J. Appl. Meteorol. 10 pp 97– (1971)
[6] and , 1976: Optical Communications. John Wiley and Sons.
[7] ;, 1951: Original Data on European red mites on apple leaves. Connecticut.
[8] 1966: Physics of Quantum Electronics (Edited by , and ), McGraw-Hill.
[9] Greenwood, J. Roy. Statist. Soc. Ser. A 83 pp 225– (1920)
[10] Griffith, Biometrics 33 pp 103– (1977)
[11] Karp, IEEE Transactions on Information Theory 16 pp 672– (1970)
[12] Katti, Biometrics 17 pp 527– (1961)
[13] Katti, Biometrika 49 pp 215– (1962) · Zbl 0114.35503 · doi:10.1093/biomet/49.1-2.215
[14] Kemp, J. Roy. Statist. Soc. Ser. B 18 pp 202– (1956)
[15] Lachs, Phy. Rev. 138 pp 1012– (1965)
[16] Laha, Bull. Calcutta Math. Soc. 46 pp 59– (1954)
[17] Lampard, -I. J. Appl. Prob. 5 pp 648– (1968)
[18] Lancaster, Ann. Math. Statist. 29 pp 719– (1958)
[19] 1968: A Study of Some Stochastic Processes in Communication Engineering. Ph. D. Thesis, Monash University, Australia.
[20] 1978: Canonical Expansion of a Mixed Bivariate Distribution. Research Report No. 20/78, Mathematics Department, University of Malaya, Malaysia. Also published in J. Franklin Inst. 307 (1979), 331–339.
[21] ;, 1940: On Random Processes and their Application to Sickness and Accident Statistics. Uppsala: Almquist and Wiksells. · JFM 66.0678.01
[22] McGill, J. Math. Psychology 4 pp 351– (1967)
[23] Menon, J. Roy. Statist. Soc. Ser. B 28 pp 143– (1966)
[24] ;, 1960: The m-distribution - A General Formula of Intensity Distribution of Rapid Fading. In: Statistical Methods in Radiowave Propagation (Ed.), Pergamon Press, London.
[25] Peřina, Phy. Lett. 24A pp 333– (1967)
[26] Peřina, J. Phys. A (Gen. Physics) Ser. 2 2 pp 702– (1969) · doi:10.1088/0305-4470/2/6/012
[27] Pólya, Annales de l’Institut Henri Poincaré 1 pp 162– (1931)
[28] Seber, Biometrika 50 pp 542– (1963) · Zbl 0126.35504 · doi:10.1093/biomet/50.3-4.542
[29] 1961: Special Functions of Mathematical Physics and Chemistry. Oliver and Boyd, Edinburgh.
[30] 1965: A Class of Contagious Distributions and Maximum Likelihood Estimation. Classical and Discrete Distributions (Ed. by ), Statist. Pub. Soc., Calcutta.
[31] Teich, Phy. Rev. Lett. 36 pp 754– (1976)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.