zbMATH — the first resource for mathematics

A perturbation theorem for the essential spectral radius of strongly continuous semigroups. (English) Zbl 0433.47022

47D03 Groups and semigroups of linear operators
47A55 Perturbation theory of linear operators
47B06 Riesz operators; eigenvalue distributions; approximation numbers, \(s\)-numbers, Kolmogorov numbers, entropy numbers, etc. of operators
47A10 Spectrum, resolvent
Full Text: DOI EuDML
[1] Vidav, I.: Spectra of perturbed semigroups with applications to transport theory. J. Math. Anal. Appl.30, 264-279 (1970). · Zbl 0195.13704
[2] J?rgens, K.: An asymptotic expansion in the theory of neutron transport. Comm. Pure Appl. Math.11, 219-242 (1958). · Zbl 0081.44105
[3] Shizuta, Y.: On the classical solutions of the Boltzmann equation. (Preprint.) · Zbl 0515.35002
[4] Angelescu, N., andV. Protopopescu: On a problem in linear transport theory. Rev. Roum. Phys.22, 1055-1061 (1977).
[5] Voigt, J.: Spectral properties of the neutron transport equation. (In preparation.) · Zbl 0567.45002
[6] Dunford, N., andJ. T. Schwarz: Linear Operators. Part I: General Theory. New York: Interscience Publ. 1958 · Zbl 0084.10402
[7] Kato, T.: Perturbation Theory for Linear Operators. Berlin-Heidelberg-New York; Springer. 1966. · Zbl 0148.12601
[8] Ribari?, M., andI. Vidav: Analytic properties of the inverseA (z) ?1 of an analytic linear operator valued functionA (z). Arch. Rational Mech. Anal.32, 298-310 (1969). · Zbl 0174.18002
[9] Vidav, I.: Existence and uniqueness of nonnegative eigenfunctions of the Boltzmann operator. J. Math. Anal. Appl.22, 144-155 (1968). · Zbl 0155.19203
[10] Reed, M., andB. Simon: Methods of Modern Mathematical Physics, IV: Analysis of Operators. New York: Academic Press. 1978. · Zbl 0401.47001
[11] Weidmann, J.: Lineare Operatoren in Hilbertr?umen. Stuttgart: B. G. Teubner. 1976. · Zbl 0344.47001
[12] Anselone, P. M.: Collectively Compact Operator Approximation Theory and Applications to Integral Equations. Englewood Cliffs, N. J.: Prentice Hall. 1971. · Zbl 0228.47001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.