×

zbMATH — the first resource for mathematics

Banach uniformly continuous representations of Lie groups and algebras. (English) Zbl 0434.22005

MSC:
22D12 Other representations of locally compact groups
22E60 Lie algebras of Lie groups
17B15 Representations of Lie algebras and Lie superalgebras, analytic theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aronszajn, N; Smith, K.T, Invariant subspaces of completely continuous operators, Ann. of math., 60, 345-350, (1954) · Zbl 0056.11302
[2] Foias, C; Sabac, M, A generalization of Lie’s theorem, IV, Rev. roumaine math. pures appl., 14, 605-608, (1974) · Zbl 0351.17008
[3] Foias, C, Invariant para-closed subspaces, Indiana univ. math. J., 20, 897-900, (1971) · Zbl 0224.47002
[4] Godement, R, Théorèmes Tauberian et théorie spectrale, Ann. sci. école norm. sup., 64, 119-138, (1947) · Zbl 0033.37601
[5] Gurarii, D.L; Lubich, Ju.I, An infinite dimensional theorem analogous to Lie’s weight theorem, Functional anal. appl., 7, 34-36, (1973) · Zbl 0278.22005
[6] Kaplansky, I, Lie algebras and locally compact groups, (1971), London · Zbl 0223.17001
[7] Kleiniecke, D.C, On operator commutators, (), 535-536 · Zbl 0079.12904
[8] Lubich, Ju.I; Macaev, V.I; Feldman, G.M, On representations with separable spectrum, Functional anal. appl., 7, (1973)
[9] Lomonosov, V.I, Invariant subspaces for the family of operators which commute with a completely continuous operator, Functional anal. appl., 7, 213-214, (1973) · Zbl 0293.47003
[10] Singer, I.M, Uniformly continuous representations of Lie groups, Ann. of math., 56, 242-247, (1952) · Zbl 0049.35802
[11] ()
[12] Vaksman, L.L; Gurarii, D.L, Algebras which contain a compact operator, Functional anal. appl., 8, 340-341, (1974) · Zbl 0319.46056
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.