×

On fuzzy logic. I. Many-valued rules of inference. (English) Zbl 0435.03020


MSC:

03B52 Fuzzy logic; logic of vagueness
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Tarski A. Remarques sur les notions fondamentales de la méthodologie des mathématiques. Ann Soc Pol Math, 1928, 6: 270-271 · JFM 55.0038.15
[2] Tarski A. O pojciu wynikania logicznego. Przeg Foloz, 1936, 39: 58-68
[3] Tarski A. Logic, Semantics, Metamathematics. 2nd ed. USA: Hackett Pulishing Company Inc., 1983
[4] Pavelka J. On fuzzy logic(I, II, III). Z fur Math Logic Grundl Math, 1979, 25: 45-52, 119-134, 447-464 · Zbl 0446.03016
[5] Novák V, Perfilieva I, Močkoř J. Mathematical Principles of Fuzzy Logic. USA: Kluwer Academic Publishers, 1999 · Zbl 0940.03028
[6] Novák V. Which logic is the real fuzzy logic? Fuzzy Set Syst, 2006, 157: 635-641 · Zbl 1100.03013
[7] Marks-II R J. Fuzzy Logic Technology and Applications. IEEE Technological Activities Board, 1994
[8] Esteva F, Godo L. Monoidal t-norm based logic: towards a logic for left-continuous t-norms. Fuzzy Set Syst, 2001, 123: 271-288 · Zbl 0994.03017
[9] Esteva F, Godo L, Noguera C. On expansions of WNM t-norm based logics with truth-constants. Fuzzy Set Syst, 2010, 161: 347-368 · Zbl 1193.03049
[10] Mundici D, Cignoli R, D’Ottaviano I M L. Algebraic Foundations of Many-Valued Reasoning. Dordrecht: Kluwer Academic Publishers, 2000
[11] Gottwald S. A Treatise on Many-Valued Logics. Baldock: Research Studies Press Ltd., 2001 · Zbl 1048.03002
[12] Hájek P. Metamathematics of Fuzzy Logic, Trends in Logic. Dordercht: Kluwer Academic Publishers, 1998. Vol 4 · Zbl 0937.03030
[13] Cintula P, Hájek P. Triangular norm based predicate fuzzy logics. Fuzzy Set Syst, 2010, 161: 311-346 · Zbl 1200.03020
[14] Esteva F, Godo L, Noguera C. First-order t-norm based fuzzy logics with truth-constants: distinguished semantics and completeness properties. Ann Pure Appl Logic, 2009, 161: 185-202 · Zbl 1222.03027
[15] Novák V. First-order fuzzy logic. Stud Logic, 1982, 46: 87-109 · Zbl 0632.03021
[16] Novák V. On fuzzy type theory. Fuzzy Set Syst, 2005, 149: 235-273 · Zbl 1068.03019
[17] Novák V. Fuzzy logic with countable evaluated syntax revisited. Fuzzy Set Syst, 2007, 158: 929-936 · Zbl 1197.03025
[18] Turunen E. Mathematics Behind Fuzzy Logic. Berlin: Springer, 1999 · Zbl 0940.03029
[19] Xu Y, Ruan D, Qin K Y, et al. Lattice-Valued Logic-an Alternative Approach to Treat Fuzziness and Incomparability. Berlin/Heidelberg/New York: Springer-Verlag Press, 2003 · Zbl 1048.03003
[20] Xu Y, Liu J, Ruan D, et al. Determination of \(α\)-resolution in lattice-valued first-order logic LF(X). Inform Sciences, 2011, 181: 1836-1862 · Zbl 1239.03007
[21] Ying M S. Deduction theorem for many-valued inference. Z Math Logik Grundl Math, 1991, 37: 533-537 · Zbl 0772.03007
[22] Ying M S. The fundamental theorem of ultraproduct in Pavelkas logic. Z Math Logik Grundl Math, 1992, 38: 197-201 · Zbl 0798.03021
[23] Pan X D, Xu Y. Semantic theory of finite lattice-valued propositional logic. Sci China Inf Sci, 2010, 53: 2022-2031
[24] Pan X D,
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.